Home
Class 12
MATHS
Let f be a differential function satisfy...

Let f be a differential function satisfying the condition. `f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0`
If f'=2`, then f'(x) is equal to

A

0

B

.1/3

C

.2/3

D

.4/3

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a differential function satisfying the condition. f((x)/(y))=(f(x))/(f(y))"for all "x,y ( ne 0) in R"and f(y) ne 0 If f'(1)=2 , then f'(x) is equal to

Let f be a differentiable function satisfying the condition f ((x)/(y)) = (f(x))/(f (y)) (y ne 0, f (y) ne 0) AA x, y in R and f '(1) =2. If the smaller area enclosed by y = f(x) , x ^(2)+y^(2) =2 is A, then findal [A], where [.] represents the greatest integer function.

Let f be a differentiable function satisfying f(x)+f(y)+f(z)+f(x)f(y)f(z)=14" for all "x,y,z inR Then,

Let f be differentiable function satisfying f((x)/(y))=f(x) - f(y)"for all" x, y gt 0 . If f'(1) = 1, then f(x) is

Let f(x) be a differentiable function on x in R such that f(x+y)=f(x). F(y)" for all, "x,y . If f(0) ne 0, f(5)=12 and f'(0)=16 , then f'(5) is equal to

If f((x)/(y))=(f(x))/(f(y)) forall x, y in R, y ne 0 and f'(x) exists for all x, f(2) = 4 . Then, f(5) is

Let be a real function satisfying f(x)+f(y)=f((x+y)/(1-xy)) for all x ,y in R and xy ne1 . Then f(x) is

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

Let f(x) is a differentiable function on x in R , such that f(x+y)=f(x)f(y) for all x, y in R where f(0) ne 0 . If f(5)=10, f'(0)=0 , then the value of f'(5) is equal to

A function f: R -> R satisfy the equation f (x)f(y) - f (xy)= x+y for all x, y in R and f(y) > 0 , then