Home
Class 12
MATHS
The area of the smaller region in which ...

The area of the smaller region in which the curve `y=[(x^(3))/(100)+(x)/(50)]` where [.] denotes the greatest integer function, divides the circles `(x-2)^(2)+(y+1)^(2)=4`, is equal to :

A

`(2 pi - 3 sqrt(3))/(2)` sq. units

B

`(3 sqrt(3) - pi)/(3)` sq. units

C

`(4 pi - 3 sqrt(3))/(3)` sq. units

D

`(5 pi - 3 sqrt(3))/(3)` sq. units

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Sketch the curves (i) y=sqrt(x-[x]) (where [.] denotes the greatest integer function).

The function f(x)=[x]^(2)+[-x^(2)] , where [.] denotes the greatest integer function, is

Solve x^2-4x-[x]=0 (where [] denotes the greatest integer function).

lim_(xto0) [min(y^(2)-4y+11)(sinx)/(x)] (where [.] denotes the greatest integer function) is

The range of f(x)=(2+x-[x])/(1-x+[x]) .where [ ] denotes the greatest integer function is

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

Area of region bounded by the curve y=(16-x^(2))/(4) and y=sec^(-1)[-sin^(2)x] (where [x] denotes the greatest ingeger function) is