Home
Class 12
MATHS
If pi/2 < alpha < pi and (3pi)/2 < bet...

If `pi/2` < `alpha` < `pi` and `(3pi)/2` < `beta` < `2pi`, `sin alpha= 15/17` `tan beta=12/5` then `sin (beta-alpha)` is

A

`-21/221`

B

`21/221`

C

`-7/221`

D

`71/221`

Text Solution

Verified by Experts

The correct Answer is:
1850
Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive root of the equation tanx-x=0 lies in (0,pi/2) (b) (pi/2,pi) (pi,(3pi)/2) (d) ((3pi)/2,2pi)

The argument of (1-i)/(1+i) is a. -pi/2 b. pi/2 c. (3pi)/2 d. (5pi)/2

int_0^pi(xtanx)/(secx+cosx)dxi s (a) (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

int_0^pi(xtanx)/(secx+cosx)dxi s (pi^2)/4 (b) (pi^2)/2 (c) (3pi^2)/2 (d) (pi^2)/3

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

1.The inverse of cosine function is defined in the intervals (A) [ -pi , 0 ] (B) [ -pi/2,0 ] (C) [ 0,pi/2 ] (D) [ pi/2 , pi ]

int_0^(pi/2)sin4xcotx dx is equal to -pi/2 (2) 0 (3) pi/2 (4) pi

One of the root equation cosx-x+1/2=0 lies in the interval (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

int_0^pi cos2xlogsinxdx= (A) pi (B) -pi/2 (C) pi/2 (D) none of these

The possible values of theta in (0,pi) such that sin (theta) + sin (4theta) + sin(7theta) = 0 are (1) (2pi)/9 , i/4 , (4pi)/9, pi/2, (3pi)/4 , (8pi)/9 (2) pi/4, (5pi)/12, pi/2 , (2pi)/3, (3pi)/4, (8pi)/9 (3) (2pi)/9, pi/4 , pi/2 , (2pi)/3 , (3pi)/4 , (35pi)/36 (4) (2pi)/9, pi/4, pi/2 , (2pi)/3 , (3pi)/4 , (8pi)/9