Home
Class 12
MATHS
Find the number of ordered pairs (m,n)ep...

Find the number of ordered pairs `(m,n)epsilon {1,2,…..20}` such that `3^(m)+7^(n)` is divisible by 10.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the number of ordered pairs \((m, n)\) such that \(3^m + 7^n\) is divisible by 10, we need to analyze the last digits of \(3^m\) and \(7^n\). ### Step-by-Step Solution: 1. **Identify the last digits of \(3^m\)**: - The last digits of powers of 3 cycle every 4: - \(3^1 \equiv 3\) - \(3^2 \equiv 9\) - \(3^3 \equiv 7\) - \(3^4 \equiv 1\) - Thus, the last digits of \(3^m\) are: - \(m \equiv 1 \mod 4 \rightarrow 3\) - \(m \equiv 2 \mod 4 \rightarrow 9\) - \(m \equiv 3 \mod 4 \rightarrow 7\) - \(m \equiv 0 \mod 4 \rightarrow 1\) 2. **Identify the last digits of \(7^n\)**: - The last digits of powers of 7 also cycle every 4: - \(7^1 \equiv 7\) - \(7^2 \equiv 9\) - \(7^3 \equiv 3\) - \(7^4 \equiv 1\) - Thus, the last digits of \(7^n\) are: - \(n \equiv 1 \mod 4 \rightarrow 7\) - \(n \equiv 2 \mod 4 \rightarrow 9\) - \(n \equiv 3 \mod 4 \rightarrow 3\) - \(n \equiv 0 \mod 4 \rightarrow 1\) 3. **Determine combinations for divisibility by 10**: - For \(3^m + 7^n\) to be divisible by 10, the last digits must add up to 10: - \(3 + 7 = 10\) - \(9 + 1 = 10\) - \(7 + 3 = 10\) - \(1 + 9 = 10\) 4. **Count valid pairs**: - **Case 1**: \(3^m \equiv 3\) and \(7^n \equiv 7\) - \(m \equiv 1 \mod 4\): Possible values are \(1, 5, 9, 13, 17\) (5 values) - \(n \equiv 1 \mod 4\): Possible values are \(1, 5, 9, 13, 17\) (5 values) - Total pairs = \(5 \times 5 = 25\) - **Case 2**: \(3^m \equiv 9\) and \(7^n \equiv 1\) - \(m \equiv 2 \mod 4\): Possible values are \(2, 6, 10, 14, 18\) (5 values) - \(n \equiv 0 \mod 4\): Possible values are \(4, 8, 12, 16, 20\) (5 values) - Total pairs = \(5 \times 5 = 25\) - **Case 3**: \(3^m \equiv 7\) and \(7^n \equiv 3\) - \(m \equiv 3 \mod 4\): Possible values are \(3, 7, 11, 15, 19\) (5 values) - \(n \equiv 3 \mod 4\): Possible values are \(3, 7, 11, 15, 19\) (5 values) - Total pairs = \(5 \times 5 = 25\) - **Case 4**: \(3^m \equiv 1\) and \(7^n \equiv 9\) - \(m \equiv 0 \mod 4\): Possible values are \(4, 8, 12, 16, 20\) (5 values) - \(n \equiv 2 \mod 4\): Possible values are \(2, 6, 10, 14, 18\) (5 values) - Total pairs = \(5 \times 5 = 25\) 5. **Calculate the total number of pairs**: - Total pairs from all cases = \(25 + 25 + 25 + 25 = 100\) ### Final Answer: The total number of ordered pairs \((m, n)\) such that \(3^m + 7^n\) is divisible by 10 is **100**.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of ordered pairs (m,n),m,n in{1,2,...,100} such that 7^m + 7^n is divisible by 5 is

The number of ordered pairs (m,n) (m,n epsilon {1,2,……..20}) such that 3^(m)+7^(n) is a multiple of 10, is

The number of ordered pairs (m,n) where m , n in {1,2,3,…,50} , such that 6^(m)+9^(n) is a multiple of 5 is

If n in N , then 3^(2n)+7 is divisible by

Find the number ordered pairs (x ,y)ifx ,y in {0,1,2,3, , 10}a n dif|x-y|> 5.

Find the number ordered pairs (x ,y)ifx ,y in {0,1,2,3, , 10}a n dif|x-y|> 5.

Consider the nine digit number n = 7 3 alpha 4 9 6 1 beta 0. The number of ordered pairs (alpha,beta) for which the given number is divisible by 88, is

10^n+3(4^(n+2))+5 is divisible by (n in N)

Consider a number N = 2 1 P 5 3 Q 4. The number of ordered pairs (P,Q) so that the number 'N' is divisible by 44, is

Consider a number N=21 P 5 3 Q 4. The number of ordered pairs (P,Q) so that the number' N' is divisible by 9, is