Home
Class 12
MATHS
.^(n)C(r)+2.^(n)C(r-1)+.^(n)C(r-2)=...

`.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=`

A

`2.^(n)C_(r+2)`

B

`.^(n+1)C_(r+1)`

C

`.^(n+2)C_(r+2)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} \), we can use the properties of binomial coefficients. ### Step-by-step Solution: 1. **Write the Expression**: We start with the expression: \[ \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} \] 2. **Rearranging the Terms**: We can rearrange the terms to group the coefficients: \[ \binom{n}{r} + \binom{n}{r-1} + \binom{n}{r-1} + \binom{n}{r-2} \] Here, we have grouped \( 2\binom{n}{r-1} \) as \( \binom{n}{r-1} + \binom{n}{r-1} \). 3. **Using the Identity**: We can apply the identity: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] to the first two terms: \[ \binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r} \] 4. **Applying the Identity Again**: Now we apply the identity again to the next two terms: \[ \binom{n}{r-1} + \binom{n}{r-2} = \binom{n+1}{r-1} \] 5. **Combining the Results**: Now we can combine the results: \[ \binom{n+1}{r} + \binom{n+1}{r-1} \] Again, we apply the identity: \[ \binom{n+1}{r} + \binom{n+1}{r-1} = \binom{n+2}{r} \] 6. **Final Result**: Therefore, we conclude that: \[ \binom{n}{r} + 2\binom{n}{r-1} + \binom{n}{r-2} = \binom{n+2}{r} \] ### Final Answer: \[ \binom{n+2}{r} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If m, n, r, in N then .^(m)C_(0).^(n)C_(r) + .^(m)C_(1).^(n)C_(r-1)+"…….."+.^(m)C_(r).^(n)C_(0) = coefficient of x^(r) in (1+x)^(m)(1+x)^(n) = coefficient of x^(f) in (1+x)^(m+n) The value of r for which S = .^(20)C_(r.).^(10)C_(0)+.^(20)C_(r-1).^(10)C_(1)+"........".^(20)C_(0).^(10)C_(r) is maximum can not be

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n)C_(r)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n+1)C_(r)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+2)C_(r)):}|=0

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=