Home
Class 12
MATHS
If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(...

If `102!``=2^(alpha)*3^(beta)*5^(gamma)*7^(delta)`…, then

A

`alpha=97`

B

`beta=(1//2)(alpha-1)`

C

`gamma=(1//2)beta`

D

`delta=(1//3)beta`

Text Solution

Verified by Experts

The correct Answer is:
a,b,c,d
Promotional Banner

Similar Questions

Explore conceptually related problems

If 15! =2^alpha* 3^beta*5^gamma*7^delta*11^theta * 13^phi , then the value of alpha-beta+gamma-delta+theta-phi is:

If (sinalpha)/(sinbeta)=(cosgamma)/(cosdelta), then (sin((alpha-beta)/2)*cos((alpha+beta)/2)*cosdelta)/(sin((delta-gamma)/2)*sin((delta+gamma)/2)*sinbeta) is equal to

Let A=[(0,2),(0,0)]and (A+1)^100 -100A=[(alpha,beta),(gamma,delta)], then alpha+beta+gamma+delta=...

Let p(x) =x^6-x^5-x^3-x^2-x and alpha, beta, gamma, delta are the roots of the equation x^4-x^3-x^2-1=0 then P(alpha)+P(beta)+P(gamma)+P(delta)=

If x=sin(alpha-beta)*sin(gamma-delta), y=sin(beta-gamma)*sin(alpha-delta), z=sin(gamma-alpha) *sin(beta-delta) , then :

If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta), prove that cotalphacotbetacotgamma=cotdelta

If alpha, beta, gamma, delta be the real of the equation x^4+4x^3-6x^2+7x-9=0 show that (1+alpha^2)(1+beta^2) (1+gamma^2)(1+delta^2) equal to 13.

If alpha,beta are roots of x^2+p x+1=0a n dgamma,delta are the roots of x^2+q x+1=0 , then prove that q^2-p^2=(alpha-gamma)(beta-gamma)(alpha+delta)(beta+delta) .

If alpha,beta are the roots of x^2+p x+q=0a n dgamma,delta are the roots of x^2+r x+s=0, evaluate (alpha-gamma)(alpha-delta)(beta-gamma)(beta-delta) in terms of p ,q ,r ,a n dsdot Deduce the condition that the equation has a common root.

If alpha,beta,gamma,delta are four complex numbers such that gamma/delta is real and alpha delta - beta gamma !=0 then z = (alpha + beta t)/(gamma+ deltat) where t is a rational number, then it represents: