Home
Class 12
MATHS
If ^nC4, ^nC5, ^nC6 are in A.P. then t...

If ` ^nC_4, ^nC_5, ^nC_6` are in A.P. then the value of n is

A

7

B

21

C

14

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( ^nC_4, ^nC_5, ^nC_6 \) are in Arithmetic Progression (A.P.), we can follow these steps: ### Step 1: Set Up the A.P. Condition If \( a, b, c \) are in A.P., then the condition is: \[ 2b = a + c \] In our case, we can let: - \( a = ^nC_4 \) - \( b = ^nC_5 \) - \( c = ^nC_6 \) Thus, we write: \[ 2 \cdot ^nC_5 = ^nC_4 + ^nC_6 \] ### Step 2: Write the Combinations in Terms of Factorials Using the formula for combinations: \[ ^nC_r = \frac{n!}{r!(n-r)!} \] we can express \( ^nC_4, ^nC_5, \) and \( ^nC_6 \): \[ ^nC_4 = \frac{n!}{4!(n-4)!}, \quad ^nC_5 = \frac{n!}{5!(n-5)!}, \quad ^nC_6 = \frac{n!}{6!(n-6)!} \] ### Step 3: Substitute into the A.P. Condition Substituting the combinations into the A.P. condition gives: \[ 2 \cdot \frac{n!}{5!(n-5)!} = \frac{n!}{4!(n-4)!} + \frac{n!}{6!(n-6)!} \] ### Step 4: Simplify the Equation We can cancel \( n! \) from both sides (assuming \( n! \neq 0 \)): \[ 2 \cdot \frac{1}{5!(n-5)!} = \frac{1}{4!(n-4)!} + \frac{1}{6!(n-6)!} \] ### Step 5: Rewrite Factorials We can rewrite the factorials: \[ 5! = 120, \quad 4! = 24, \quad 6! = 720 \] Thus, we can express the equation as: \[ \frac{2}{120(n-5)!} = \frac{1}{24(n-4)!} + \frac{1}{720(n-6)!} \] ### Step 6: Clear the Denominators Multiply through by \( 720(n-5)!(n-4)!(n-6)! \) to eliminate the denominators: \[ 2 \cdot 720 = 30(n-4)(n-5) + (n-5)(n-4) \] ### Step 7: Expand and Rearrange Expanding the right-hand side: \[ 1440 = 30(n^2 - 9n + 20) + (n^2 - 9n + 20) \] Combining like terms gives: \[ 1440 = 31(n^2 - 9n + 20) \] This simplifies to: \[ 31n^2 - 279n + 620 = 0 \] ### Step 8: Solve the Quadratic Equation Using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a = 31, b = -279, c = 620 \): \[ n = \frac{279 \pm \sqrt{(-279)^2 - 4 \cdot 31 \cdot 620}}{2 \cdot 31} \] ### Step 9: Calculate the Discriminant Calculating the discriminant: \[ (-279)^2 - 4 \cdot 31 \cdot 620 = 77841 - 77240 = 601 \] So: \[ n = \frac{279 \pm \sqrt{601}}{62} \] ### Step 10: Final Values Calculating the values gives us two potential solutions for \( n \): - \( n = 7 \) - \( n = 14 \) Thus, the values of \( n \) are \( 7 \) and \( 14 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If .^nC_4, ^nC_5 and .^nC_6 are in A.P. then n is equal to (A) 11 (B) 14 (C) 12 (D) 9

If .^(n)C_(4),.^(n)C_(5), .^(n)C_(6) are in A.P., then find the value of n.

If the coefficients ""^nC_4, ""^nC_5, ""^nC_6 of (1 +x)^n are in A.P. then n is equal to

If ^n C_9=^n C_8, find ^nC_17

If .^nC_(n-4)=15 , find .^nC_6

If .^nC_30=^nC_4 , find n

If .^nP_r=840, .^nC_r=35, then find n=

If (nC_0)/(2^n)+2.(nC_1)/2^n+3.(nC_2)/2^n+....(n+1)(nC_n)/2^n=16 then the value of 'n' is

If ^nC_r=84 ,^n C_(r-1)=36 ,a n d^n C_(r+1)=126 , then find the value of ndot

If .^nC_8=^nC_6 , determine n and hence .^nC_2