Home
Class 12
MATHS
ABCD is a rectangle with A(-1,2) , B (3,...

ABCD is a rectangle with A(-1,2) , B (3,7) and AB : BC = 4 : 3 . If d is the distance from the vertices of the rectangle then [d] is equal to (where [.] denotes the greatest integer function ).

A

4

B

5

C

6

D

7

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the distance \( d \) from the vertices of the rectangle ABCD, given the coordinates of points A and B, and the ratio of the lengths of sides AB and BC. ### Step-by-Step Solution: 1. **Identify the Coordinates:** - Given points: - \( A(-1, 2) \) - \( B(3, 7) \) 2. **Calculate the Length of AB:** - The distance formula between two points \( (x_1, y_1) \) and \( (x_2, y_2) \) is: \[ AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \] - Plugging in the coordinates of A and B: \[ AB = \sqrt{(3 - (-1))^2 + (7 - 2)^2} = \sqrt{(3 + 1)^2 + (5)^2} = \sqrt{4^2 + 5^2} = \sqrt{16 + 25} = \sqrt{41} \] 3. **Use the Given Ratio:** - We know \( \frac{AB}{BC} = \frac{4}{3} \). - Let \( BC = y \). Then: \[ \frac{\sqrt{41}}{y} = \frac{4}{3} \implies y = \frac{3 \sqrt{41}}{4} \] 4. **Calculate the Length of AC (Diagonal):** - In a rectangle, the diagonal can be calculated using the Pythagorean theorem: \[ AC = \sqrt{AB^2 + BC^2} \] - Substitute \( AB \) and \( BC \): \[ AC = \sqrt{(\sqrt{41})^2 + \left(\frac{3 \sqrt{41}}{4}\right)^2} = \sqrt{41 + \frac{9 \cdot 41}{16}} = \sqrt{41 + \frac{369}{16}} = \sqrt{\frac{656 + 369}{16}} = \sqrt{\frac{1025}{16}} = \frac{\sqrt{1025}}{4} \] 5. **Find the Distance \( d \):** - The distance \( d \) from the vertices of the rectangle to the center can be expressed as: \[ d = \frac{AC}{2} = \frac{\frac{\sqrt{1025}}{4}}{2} = \frac{\sqrt{1025}}{8} \] 6. **Calculate the Value of \( d \):** - To find \( \sqrt{1025} \): \[ \sqrt{1025} \approx 32.0156 \quad \text{(since } 32^2 = 1024\text{)} \] - Thus: \[ d \approx \frac{32.0156}{8} \approx 4.00195 \] 7. **Apply the Greatest Integer Function:** - The greatest integer function \( [d] \) is the largest integer less than or equal to \( d \): \[ [d] = [4.00195] = 4 \] ### Final Answer: \[ [d] = 4 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

ABCD is a rectangle with A(-1,2),B(3,7) and AB:BC=4:3 . If P is the centre of the rectangle, then the distance of P from each corner is equal to

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

x→1 lim ​ (1−x+[x−1]+[1−x]) is equal to (where [.] denotes greatest integer function)

Lt_(xto2) [x] where [*] denotes the greatest integer function is equal to

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The period of the function f(x)=Sin(x +3-[x+3]) where [] denotes the greatest integer function

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Find the range of f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

Evaluate int_(0)^(oo)[(3)/(x^(2)+1)]dx where [.] denotes the greatest integer function.

The value of int _(1)^(2)(x^([x^(2)])+[x^(2)]^(x)) d x is equal to where [.] denotes the greatest integer function