Home
Class 12
MATHS
If points A(5/sqrt2,sqrt3) and (cos^2the...

If points `A(5/sqrt2,sqrt3)` and `(cos^2theta, costheta)` are the same side the line 2x - y = 1, then find the values of `theta` in `[pi,2pi]`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( \theta \) such that the points \( A(5/\sqrt{2}, \sqrt{3}) \) and \( B(\cos^2 \theta, \cos \theta) \) lie on the same side of the line given by the equation \( 2x - y = 1 \). ### Step-by-Step Solution: 1. **Identify the line equation**: The line can be rewritten in the standard form: \[ 2x - y - 1 = 0 \] Here, \( a = 2 \), \( b = -1 \), and \( c = -1 \). 2. **Substitute point A into the line equation**: Substitute \( A(5/\sqrt{2}, \sqrt{3}) \) into the line equation: \[ 2\left(\frac{5}{\sqrt{2}}\right) - \sqrt{3} - 1 \] Simplifying this: \[ = \frac{10}{\sqrt{2}} - \sqrt{3} - 1 = 5\sqrt{2} - \sqrt{3} - 1 \] 3. **Substitute point B into the line equation**: Substitute \( B(\cos^2 \theta, \cos \theta) \) into the line equation: \[ 2(\cos^2 \theta) - \cos \theta - 1 \] 4. **Determine the condition for same side**: For points \( A \) and \( B \) to be on the same side of the line, the product of the results from substituting both points into the line equation must be greater than zero: \[ (5\sqrt{2} - \sqrt{3} - 1) \cdot (2\cos^2 \theta - \cos \theta - 1) > 0 \] 5. **Evaluate the sign of \( 5\sqrt{2} - \sqrt{3} - 1 \)**: Calculate \( 5\sqrt{2} - \sqrt{3} - 1 \): - Approximate values: \( \sqrt{2} \approx 1.414 \) and \( \sqrt{3} \approx 1.732 \) - Thus, \( 5\sqrt{2} \approx 7.07 \) - Therefore, \( 5\sqrt{2} - \sqrt{3} - 1 \approx 7.07 - 1.732 - 1 \approx 4.338 \) (which is positive). 6. **Set up the inequality**: Since \( 5\sqrt{2} - \sqrt{3} - 1 > 0 \), we need: \[ 2\cos^2 \theta - \cos \theta - 1 > 0 \] 7. **Factor the quadratic**: The quadratic can be factored: \[ 2\cos^2 \theta - \cos \theta - 1 = (2\cos \theta + 1)(\cos \theta - 1) \] 8. **Determine the intervals**: The product \( (2\cos \theta + 1)(\cos \theta - 1) > 0 \) gives us two conditions: - \( 2\cos \theta + 1 > 0 \) implies \( \cos \theta > -\frac{1}{2} \) - \( \cos \theta - 1 > 0 \) implies \( \cos \theta > 1 \) (which is not possible). Thus, we only consider the first condition: - \( \cos \theta > -\frac{1}{2} \) 9. **Find the angles for \( \theta \)**: The cosine function is greater than \(-\frac{1}{2}\) in the intervals: \[ \theta \in [\frac{5\pi}{3}, 2\pi] \cup [0, \frac{\pi}{3}] \] However, since we are restricted to \( [\pi, 2\pi] \), we focus on: \[ \theta \in [\frac{5\pi}{3}, 2\pi] \] ### Final Answer: The values of \( \theta \) in the interval \( [\pi, 2\pi] \) such that points \( A \) and \( B \) are on the same side of the line \( 2x - y = 1 \) are: \[ \theta \in \left[\frac{5\pi}{3}, 2\pi\right] \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2sin^(2)theta=3costheta , where 0lethetale2pi , then find the value of theta .

If costheta=(1)/(sqrt(2)) ,then find the value of cos2theta .

If the points (-2, 0), (-1,(1)/(sqrt(3))) and (cos theta, sin theta) are collinear, then the number of value of theta in [0, 2pi] is

If P (sin theta, 1//sqrt(2)) and Q(1//sqrt(2), cos theta), -pi le theta le pi are two points on the same side of the line x-y=0, then theta belongs to the interval

If cos 2 theta =(sqrt(2)+1)( cos theta -(1)/(sqrt(2))) , then the value of theta is

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta

If costheta=(1)/(sqrt(2)) ,then find the value of (tan^(2)theta+1) .

If (pi/4)< theta <(pi/2) ,then write the value of sqrt(1-sin2theta)

sqrt(2+sqrt(2+2cos 4 theta)), forall 0 lt theta lt pi//4 is

If costheta=1/2 and pi< theta < (3pi)/2 , find the value of 4tan^2theta-3cos e c^2thetadot