Home
Class 12
MATHS
Prove that the area of the parallelogram...

Prove that the area of the parallelogram formed by the lines `xcosalpha+ysinalpha=p ,xcosalpha+ys inalpha=q ,xcosbeta+ysinbeta=ra n dx cosbeta+ysinbeta=si s+-(p-q)(r-s)cos e c(alpha-beta)dot`

A

`pq+rs`

B

`|pq tan alpha + rs tan beta|`

C

`|(p-q) (r - s ) cosec (alpha - beta)|`

D

`|(p - q ) (r - s ) tan (alpha + beta)|`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosalpha+cosbeta=0=s inalpha+s inbeta, then prove that cos2alpha+cos2beta=-2cos(alpha+beta)dot

If p\ and\ q be the perpendicular form the origin upon the straight lines x s e ctheta+ycosectheta=a\ and\ xcostheta-y sintheta=acos2theta Prove that : 4p^2+q^2=a^2\ dot

Find the area of the triangle formed by the points P(-1. 5 ,\ 3),\ Q(6,\ -2)\ a n d\ R(-3,\ 4)dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)-(y^2)/(b^2)=1, then prove that a^2cos^2alpha-b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2dot

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2cos^2alpha+b^2sin^2alpha=p^2 .

If t a nalpha=p/q , where alpha=6beta,alpha being acute angle, prove that 1/2{pcos e c2beta-qsec2beta}=sqrt(p^2+q^2)

If p and q are the lengths of perpendiculars from the origin to the lines xcostheta-ysintheta=kcos2theta and xsectheta+yc o s e ctheta=k , respectively, prove that p^2+4q^2=k^2 .

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ sin^2alpha=p^2 .