Home
Class 12
MATHS
Show that 1 +xlog(e)x+sqrt(x^(2)+1)gesqr...

Show that 1 +`xlog_(e)x+sqrt(x^(2)+1)gesqrt(1+x^(2))` for all `xgt0`

Text Solution

Verified by Experts

The correct Answer is:
`1+ x In (x+sqrt(x2+1))ge sqrt(1+x^(2)) for x gt 0.`
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that 1+x ln (x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

Show that 1+xin(x+sqrt(x^2+1))geqsqrt(1+x^2) for all xgeq0.

Evaluate : int(xlog_(e)x)/((x^(2)-1)^(3//2))dx

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

Prove that e^(x) ge 1 +x and hence e^(x) +sqrt(1+e^(2x))ge(1+x)+sqrt(2+2x+x^(2)) forall x in R

Prove that e^x+sqrt(1+e^(2x))geq(1+x)+sqrt(2+2x+x^2)AAx in R

prove that (x)/(1+x) lt log (1+x)ltx , for all xgt 0

∫ 1 / 2 − 1 int(e^x(2-x^2)dx)/((1-x)sqrt(1-x^2))

Solve for x:log_(1//sqrt2),(x-1)gt2

Area bounded by the line y=x, curve y=f(x),(f(x)gtx,AA xgt1) and the lines x=1,x=t is (t-sqrt(1+t^2)-(1+sqrt2)) for all tgt1 . Find f(x) .