Home
Class 12
MATHS
Let a+b=4,w h e r ea<2,a n dl e tg(x) be...

Let `a+b=4,w h e r ea<2,a n dl e tg(x)` be a differentiable function. If `(dg)/(dx)>0` for all `x ,` prove that `int_0^ag(x)dx+int_0^bg(x)dxin c r e r a s e sa s(b-a)in c r e r a s e sdot`

Text Solution

Verified by Experts

The correct Answer is:
`f(t) increasing as t increases`` f(t)` increases as `(b-a)` increases`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a+b=4,w h e r ea 0 for all x , prove that int_0^ag(x)dx+int_0^bg(x)dxin c r e r a s e sa s(b-a)in c r e r a s e sdot

Let a+b=4,w h e r ea 0 for all x , prove that int_0^ag(x)dx+int_0^bg(x)dxin c r e r a s e sa s(b-a)in c r e r a s e sdot

Prove that int_0^1x e^x dx=1

prove it 2e^(-1/4) < int_0^2e^(x^2-x)dx < 2e^2

int_(0)^(1)e^(2x)e^(e^(x) dx =)

Evaluate int_a^b(dx)/(sqrt(x)),w h e r ea , b > 0.

Evaluate int_a^b(dx)/(sqrt(x)),w h e r ea , b > 0.

int_0^1(e^x dx)/(1+e^x)

If I=int_(0)^(1) (1+e^(-x^2)) dx then, s

The value of int_0^(pi//2)cosx\ e^(sin x)dx\ i s a. 1 b. e-1 c. 0 d. -1