Home
Class 12
MATHS
The number of integral values of a in [0...

The number of integral values of a in `[0,10)` so that function, `f(x)=x^(3)-3(7-a)x^(2)-3(9-a^(2))x+2017` assume local minimum value at some `xepsilonR^(-)`

Text Solution

Verified by Experts

The correct Answer is:
`a gt 7`
Promotional Banner

Similar Questions

Explore conceptually related problems

Number of integral values of x satisfying function f(x)=log(x-1)+log(3-x)

The function f(x)=2x^(3)-3(a+b)x^(2)+6abx has a local maximum at x=a , if

Number of integral values of x in the domain of f(x)=sqrt(-[x]^2+3[x]-2) is

Find the sum of all possible integral values of in [1,100] for which the function f(x)=2x^(3)-3(2+alpha)x^(2) has exactly one local maximum and one local minimum.

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n

If x in R , " then " f(x)=(x-1)^(2)+(x-2)^2+(x-3)^(2)+(x-4)^(2) assumes its minimum value at :

Number of integral values of x in the domain of function f (x)= sqrt(ln(|ln|x||)) + sqrt(7|x|-(|x|)^2-10) is equal to

The function f(x)=pix^(3)-(3pi)/(2)(a+b)x^(2)+3piabx has a local minimum at x = a, then the values a and b can take are

Find the maximum and minimum values of the following functions. f(x)=2x^(3)-15x^(2)+36x+10