Home
Class 12
MATHS
If N is any four digit number say x1, x2...

If N is any four digit number say `x_1, x_2, x_3, x_4`, then the maximum value ofis equal to `N/(x_1+x_2+x_3+x_4)` is equal to

A

1000

B

`1111/4`

C

800

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the maximum value of \( \frac{N}{x_1 + x_2 + x_3 + x_4} \) where \( N \) is a four-digit number represented by its digits \( x_1, x_2, x_3, x_4 \), we can follow these steps: ### Step 1: Understand the constraints A four-digit number \( N \) can range from 1000 to 9999. The digits \( x_1, x_2, x_3, x_4 \) represent the thousands, hundreds, tens, and units place respectively. ### Step 2: Express \( N \) in terms of its digits The four-digit number \( N \) can be expressed as: \[ N = 1000x_1 + 100x_2 + 10x_3 + x_4 \] ### Step 3: Calculate the sum of the digits The sum of the digits is: \[ S = x_1 + x_2 + x_3 + x_4 \] ### Step 4: Set up the expression to maximize We need to maximize the expression: \[ \frac{N}{S} = \frac{1000x_1 + 100x_2 + 10x_3 + x_4}{x_1 + x_2 + x_3 + x_4} \] ### Step 5: Analyze extreme cases 1. **Minimum case**: If \( N = 1000 \) (i.e., \( x_1 = 1, x_2 = 0, x_3 = 0, x_4 = 0 \)): \[ S = 1 + 0 + 0 + 0 = 1 \quad \Rightarrow \quad \frac{1000}{1} = 1000 \] 2. **Maximum case**: If \( N = 9999 \) (i.e., \( x_1 = 9, x_2 = 9, x_3 = 9, x_4 = 9 \)): \[ S = 9 + 9 + 9 + 9 = 36 \quad \Rightarrow \quad \frac{9999}{36} \approx 277.75 \] ### Step 6: Check other combinations To ensure we have the maximum, we can check other combinations of digits. For example: - If \( N = 2000 \) (i.e., \( x_1 = 2, x_2 = 0, x_3 = 0, x_4 = 0 \)): \[ S = 2 \quad \Rightarrow \quad \frac{2000}{2} = 1000 \] - If \( N = 3000 \) (i.e., \( x_1 = 3, x_2 = 0, x_3 = 0, x_4 = 0 \)): \[ S = 3 \quad \Rightarrow \quad \frac{3000}{3} = 1000 \] - Continuing this way, we find that for \( N = 4000, 5000, \ldots, 9000 \), the value remains 1000. ### Conclusion The maximum value of \( \frac{N}{x_1 + x_2 + x_3 + x_4} \) is \( 1000 \) when \( N \) is of the form \( 1000, 2000, 3000, \ldots, 9000 \). ### Final Answer \[ \text{Maximum value} = 1000 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If {:X=[(3,-4),(1,-1)]:} , the value of X^n is equal to

If {:X=[(3,-4),(1,-1)]:} , the value of X^n is equal to

If 3^(x)=4^(x-1) , then x is equal to

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If n is the number of positive integral solutions of x_1 x_2 x_3 x_4 = 210 . Then

If x_1, x_2, x_3,........x_n are the roots of x^n + ax + b = 0 , then the value of (x_1 - x_2)(x_1 - x_3) (x_1 - x_4) .......(x_1 – x_n) is equal to

Let f (x ) = | 3 - | 2- | x- 1 |||, AA x in R be not differentiable at x _ 1 , x _ 2 , x _ 3, ….x_ n , then sum _ (i= 1 ) ^( n ) x _ i^2 equal to :

If N is the number of positive integral solutions of x_1x_2x_3x_4 = 770 , then N =

If N is the number of positive integral solutions of the equation x_(1)x_(2)x_(3)x_(4)=770 , then the value of N is

If (x_i , 1/x_i), i = 1, 2, 3, 4 are four distinct points on a circle, then (A) x_1 x_2 = x_3 x_4 (B) x_1 x_2 x_3 x_4 = 1 (C) x_1 + x_2 + x_3 + x_4 = 1 (D) 1/x_1 + 1/x_2 + 1/x_3 + 1/x_4 = 1