Home
Class 12
MATHS
Let f(x)=int(0)^(x)e^(t)(t-1)(t-2)dt. Th...

Let `f(x)=int_(0)^(x)e^(t)(t-1)(t-2)dt.` Then, f decreases in the interval

A

(1,2)

B

(1, 3/2)

C

(1,3)

D

(1,4)

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

Let f(x) = int_(0)^(x)(t-1)(t-2)^(2) dt , then find a point of minimum.

The interval in which f(x)=int_(0)^(x){(t+1)(e^(t)-1)(t-2)(t-4)} dt increases and decreases

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then find the interval in which f(x) increases.

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Consider f(x)=int_(-1)^(x)(e^((x-t)/(x-2-t))dt)/(x-2-t)^(2) Q. The greatest integer in range of f(x) is

Let f(x) be a differentiable function satisfying f(x)=int_(0)^(x)e^((2tx-t^(2)))cos(x-t)dt , then find the value of f''(0) .