Home
Class 12
MATHS
Range of the function f(x)= x cos( 1/x),...

Range of the function `f(x)= x cos( 1/x), xgt1`

A

`[cos1+sin1 , infty)`

B

`[1, infty)`

C

`[cos1,1)`

D

`[cos1, infty)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = x \cos\left(\frac{1}{x}\right) \) for \( x \geq 1 \), we will follow these steps: ### Step 1: Find the derivative of the function To determine if the function is increasing or decreasing, we first need to calculate the derivative \( f'(x) \). Using the product rule: \[ f'(x) = \frac{d}{dx}[x] \cdot \cos\left(\frac{1}{x}\right) + x \cdot \frac{d}{dx}\left[\cos\left(\frac{1}{x}\right)\right] \] The derivative of \( \cos\left(\frac{1}{x}\right) \) is: \[ \frac{d}{dx}\left[\cos\left(\frac{1}{x}\right)\right] = -\sin\left(\frac{1}{x}\right) \cdot \frac{d}{dx}\left[\frac{1}{x}\right] = -\sin\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = \frac{\sin\left(\frac{1}{x}\right)}{x^2} \] Thus, we have: \[ f'(x) = \cos\left(\frac{1}{x}\right) + x \cdot \frac{\sin\left(\frac{1}{x}\right)}{x^2} \] \[ f'(x) = \cos\left(\frac{1}{x}\right) + \frac{\sin\left(\frac{1}{x}\right)}{x} \] ### Step 2: Analyze the sign of the derivative For \( x \geq 1 \), we know \( \frac{1}{x} \) will be in the interval \( (0, 1] \). Since \( \cos\left(\frac{1}{x}\right) \) is positive and \( \frac{\sin\left(\frac{1}{x}\right)}{x} \) is also positive for \( x \geq 1 \), we can conclude that: \[ f'(x) > 0 \quad \text{for } x \geq 1 \] This means that \( f(x) \) is an increasing function for \( x \geq 1 \). ### Step 3: Find the minimum value of the function To find the minimum value of \( f(x) \) when \( x = 1 \): \[ f(1) = 1 \cdot \cos\left(1\right) = \cos(1) \] ### Step 4: Determine the range of the function Since \( f(x) \) is increasing for \( x \geq 1 \) and the minimum value at \( x = 1 \) is \( f(1) = \cos(1) \), as \( x \) approaches infinity, \( f(x) \) will also approach infinity. Thus, the range of the function \( f(x) = x \cos\left(\frac{1}{x}\right) \) for \( x \geq 1 \) is: \[ [\cos(1), \infty) \] ### Final Answer: The range of the function \( f(x) = x \cos\left(\frac{1}{x}\right) \) for \( x \geq 1 \) is \( [\cos(1), \infty) \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Range of the function f(x)=cos^(-1)x+2cot^(-1)x+3cosec^(-1)x is equal to

Range of the function f (x) = cos^-1 (-{x}) , where {.} is fractional part function, is:

Range ofthe function f(x)=cos(Ksin x) is [-1,1] , then the least positive integral value of K will be

Kind the range of the function f(x)=(1)/(x+4)-2 .

Range of the function f(x)=2+|x^(2)+1| is

Range of the function f(x)=(cos^(-1)abs(1-x^(2))) is

Domain and range of the function f(x)=cos(sqrt(1-x^(2))) are

Find the range of the function f(x)=4cos^(3)x-8cos(2)x+1 .

The range of the function f(x) = sec^(-1) ( x) + tan ^(-1) (x) ,is

Consider f(x)=sin −1 (sec(tan −1 x)+cos −1 (cosec(cot −1 x) Statement-1: Domain of f(x) is a singleton. Statement-2: Range of the function f(x) is a singleton.