Home
Class 12
MATHS
If f(x) is differentiable and strictly i...

If `f(x)` is differentiable and strictly increasing function, then the value of `("lim")_(xvec0)(f(x^2)-f(x))/(f(x)-f(0))` is 1 (b) 0 (c) `-1` (d) 2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

Let f(x)=[(sinx)/x]+[(2sin2x)/x]++[(10sin10 x)/x] (where [.] is the greatest integer function) Then the value of ("lim")_(xvec0)f(x) equals 55 (b) 164 (c) 165 (d) 375

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

If f(x0a n dg(x)=f(x)sqrt(1-2(f(x))^2) are strictly increasing AAx in R , then find the values of f(x)dot

For a differentiable function f(x) , if f'(2)=2 and f'(3)=1 , then the value of lim_(xrarr0)(f(x^(2)+x+2)-f(2))/(f(x^(2)-x+3)-f(3)) is equal to

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If f(x)=(lim)_(nvecoo)(cos(x/(sqrt(n))))^n , then the value of (lim)(xvec0)(f(x)-1)/x is 0 b. 1 c. 2 d. 3//2

If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0 . Then

Let f''(x) be continuous at x = 0 and f"(0) = 4 then value of lim_(x->0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(x) is a differentiable real valued function such that f(0)=0 and f\'(x)+2f(x) le 1 , then (A) f(x) gt 1/2 (B) f(x) ge 0 (C) f(x) le 1/2 (D) none of these