Home
Class 12
MATHS
Find the maxima and minimum value of the...

Find the maxima and minimum value of the function `y = 40/(3x^(4)+ 8x^(3)- 18x^(2) +60`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum and minimum values of the function \[ y = \frac{40}{3x^4 + 8x^3 - 18x^2 + 60}, \] we will first rewrite the function in terms of \( z \): \[ z = \frac{1}{y} = \frac{3x^4 + 8x^3 - 18x^2 + 60}{40}. \] ### Step 1: Find the derivative of \( z \) To find the critical points, we need to find the derivative \( \frac{dz}{dx} \): \[ \frac{dz}{dx} = \frac{1}{40} \cdot (12x^3 + 24x^2 - 36x). \] Setting the derivative equal to zero to find critical points: \[ 12x^3 + 24x^2 - 36x = 0. \] ### Step 2: Factor the derivative Factoring out the common term: \[ 12x(x^2 + 2x - 3) = 0. \] This gives us: \[ 12x = 0 \quad \text{or} \quad x^2 + 2x - 3 = 0. \] ### Step 3: Solve for \( x \) From \( 12x = 0 \), we have: \[ x = 0. \] For the quadratic equation \( x^2 + 2x - 3 = 0 \), we can factor it as: \[ (x + 3)(x - 1) = 0. \] Thus, the solutions are: \[ x = -3 \quad \text{and} \quad x = 1. \] ### Step 4: Find the second derivative Next, we need to find the second derivative \( \frac{d^2z}{dx^2} \) to determine the nature of these critical points: \[ \frac{d^2z}{dx^2} = \frac{1}{40} \cdot (36x^2 + 48x - 36). \] ### Step 5: Evaluate the second derivative at critical points 1. **At \( x = 0 \)**: \[ \frac{d^2z}{dx^2} = \frac{1}{40} \cdot (36(0)^2 + 48(0) - 36) = \frac{-36}{40} < 0 \quad \text{(Maximum)}. \] 2. **At \( x = 1 \)**: \[ \frac{d^2z}{dx^2} = \frac{1}{40} \cdot (36(1)^2 + 48(1) - 36) = \frac{48}{40} > 0 \quad \text{(Minimum)}. \] 3. **At \( x = -3 \)**: \[ \frac{d^2z}{dx^2} = \frac{1}{40} \cdot (36(-3)^2 + 48(-3) - 36) = \frac{36(9) - 144 - 36}{40} = \frac{324 - 180}{40} > 0 \quad \text{(Minimum)}. \] ### Step 6: Calculate the values of \( y \) 1. **At \( x = 0 \)**: \[ y(0) = \frac{40}{3(0)^4 + 8(0)^3 - 18(0)^2 + 60} = \frac{40}{60} = \frac{2}{3}. \] 2. **At \( x = 1 \)**: \[ y(1) = \frac{40}{3(1)^4 + 8(1)^3 - 18(1)^2 + 60} = \frac{40}{3 + 8 - 18 + 60} = \frac{40}{53}. \] 3. **At \( x = -3 \)**: \[ y(-3) = \frac{40}{3(-3)^4 + 8(-3)^3 - 18(-3)^2 + 60} = \frac{40}{3(81) - 8(27) - 18(9) + 60} = \frac{40}{243 - 216 - 162 + 60} = \frac{40}{-75} = -\frac{8}{15}. \] ### Conclusion - The maximum value of \( y \) occurs at \( x = 0 \) and is \( \frac{2}{3} \). - The minimum value of \( y \) occurs at \( x = -3 \) and is \( -\frac{8}{15} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function y=x^(3) , "in" x in [-2,3] ?

Find the maximum and minimum values of the following functions. f(x)=x^(3)-2x^(2)+x+6

Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8

If x lies in first quadrant, find the maximum and minimum values of the function 4 sin x+3 cos x .

Find the maximum or minimum values of the following functions: (i) x^(3)-2x^(2)+x+3

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^3-21 x^2+36 x-20 .

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=2x^3-21x^2+36 x-20.

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=-3/4x^4-8x^3-(45)/2x^2+105 .

Find all the points of local maxima and minima and the corresponding maximum and minimum values of the function f(x)=-3/4x^4-8x^3-(45)/2x^2+105 .

Find maximum or minimum values of the functions (a) y =25 x^(2) + 5 - 10 x (b) y = 9 - (x - 3)^(2)