Home
Class 12
MATHS
The function f(x)=tan^(-1)(sinx+cosx) is...

The function `f(x)=tan^(-1)(sinx+cosx)` is an increasing function in

A

`(-pi/2, 0)`

B

`(0, pi/2)`

C

`(-pi/4, pi/4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals where the function \( f(x) = \tan^{-1}(\sin x + \cos x) \) is increasing, we need to find the derivative \( f'(x) \) and analyze its sign. ### Step 1: Find the derivative of \( f(x) \) Using the chain rule, we know that the derivative of \( \tan^{-1}(u) \) is given by: \[ f'(x) = \frac{1}{1 + u^2} \cdot u' \] where \( u = \sin x + \cos x \). Now, we differentiate \( u \): \[ u' = \frac{d}{dx}(\sin x + \cos x) = \cos x - \sin x \] Thus, we can express \( f'(x) \) as: \[ f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \cdot (\cos x - \sin x) \] ### Step 2: Determine when \( f'(x) \geq 0 \) For \( f(x) \) to be an increasing function, we need: \[ f'(x) \geq 0 \] This implies: \[ \cos x - \sin x \geq 0 \] or equivalently: \[ \cos x \geq \sin x \] ### Step 3: Solve the inequality \( \cos x \geq \sin x \) To solve \( \cos x \geq \sin x \), we can rearrange it to: \[ \cos x - \sin x \geq 0 \] This can be rewritten as: \[ \frac{\cos x}{\sin x} \geq 1 \] or \[ \tan x \leq 1 \] ### Step 4: Find the intervals The inequality \( \tan x \leq 1 \) holds true in the intervals where the angle \( x \) is between: \[ -\frac{\pi}{4} + n\pi \quad \text{and} \quad \frac{\pi}{4} + n\pi \] for any integer \( n \). ### Step 5: Identify the specific intervals in the range \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \) Within the interval \( -\frac{\pi}{2} \) to \( \frac{\pi}{2} \): - \( \tan x = 1 \) at \( x = \frac{\pi}{4} \) - \( \tan x < 1 \) for \( x < \frac{\pi}{4} \) - \( \tan x > 1 \) for \( x > \frac{\pi}{4} \) Thus, the function \( f(x) \) is increasing in the interval: \[ \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \] ### Conclusion The function \( f(x) = \tan^{-1}(\sin x + \cos x) \) is increasing in the interval \( \left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=sin^(-1)(sinx) , is

Show that f(x)=tan^(-1)(sinx+cosx) is an increasing function on the interval (0,\ pi//4) .

The function f(x)=|sinx|

Show that f(x)=tan^(-1)(sinx+cosx) is a decreasing function on the interval on (pi//4,\ pi//2) .

Show that the function f(x) = x + cosx - a is an increasing function and hence deduce that the equation x+cosx = a has no positive root for a lt 1

Show that f(x)=tan^(-1)(sinx+cosx) is decreasing function on the interval (pi/4,pi/2)dot

Show that the function f(x)=cot^(-1)(sinx+cosx) is decreasing on (0,\ pi//4) and increasing on (pi//4,\ pi//2) .

The function f(x) = tan ^-1 x - In(1 + x^2) is increasing for

Find the values of ' a ' for which the function f(x)=sinx-a x+4 is increasing function on R .

Find the values of ' a ' for which the function f(x)=sinx-a x+4 is increasing function on R .