Home
Class 12
MATHS
If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^...

If `y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)++(x^n)/(n !),` show that `(dy)/(dx)-y+(x^n)/(n !)=0.`

A

can't have any real root

B

can't have any repeated root

C

has one positive root

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y

If y=1+x+(x^2)/(2!)+(x^3)/(3!)+...+(x^n)/(n !),t h e n(dy)/(dx) is equal to (a) y (b) y+(x^n)/(n !) (c) y-(x^n)/(n !) (d) y-1-(x^n)/(n !)

If x^m\ y^n=1 , prove that (dy)/(dx)=-(m y)/(n x)

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0 .

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If y=A e^(m x)+B e^(n x) , show that (d^2y)/(dx^2)-(m+n)(dy)/(dx)+m n y=0

Solve: (dy)/(dx)+y/x=x^n

If x^m y^n=(x+y)^(m+n) , prove that (dy)/(dx)=y/x .

If x^m y^n=(x+y)^(m+n), prove that (dy)/(dx)=y/x .

If y=Acosn x+Bsinn x , show that (d^2y)/(dx^2)+n^2\ y=0 .