Home
Class 12
MATHS
Let p = 144 ^(sin^(2)x) + 144^( cos^(2)...

Let `p = 144 ^(sin^(2)x) + 144^( cos^(2)x),` then the number of integral values of such p's can take are

A

124

B

123

C

144

D

122

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the number of integral values that the expression \( p = 144^{\sin^2 x} + 144^{\cos^2 x} \) can take. ### Step-by-Step Solution: 1. **Rewrite the Expression:** We start with the expression: \[ p = 144^{\sin^2 x} + 144^{\cos^2 x} \] We can express \( 144 \) as \( 12^2 \): \[ p = (12^2)^{\sin^2 x} + (12^2)^{\cos^2 x} = 12^{2\sin^2 x} + 12^{2\cos^2 x} \] 2. **Introduce a Substitution:** Let \( t = \cos(2x) \). Then, we can express \( \sin^2 x \) and \( \cos^2 x \) in terms of \( t \): \[ \sin^2 x = \frac{1 - t}{2}, \quad \cos^2 x = \frac{1 + t}{2} \] Substituting these into \( p \): \[ p = 12^{1 - t} + 12^{1 + t} \] 3. **Simplify the Expression:** We can factor out \( 12 \): \[ p = 12 \left( 12^{-t} + 12^{t} \right) \] This can be rewritten using the property of exponents: \[ p = 12 \left( \frac{1}{12^t} + 12^t \right) \] 4. **Define a New Variable:** Let \( u = 12^t \). Then, we have: \[ p = 12 \left( \frac{1}{u} + u \right) \] The function \( f(u) = \frac{1}{u} + u \) is defined for \( u > 0 \). 5. **Find the Range of \( u \):** Since \( t = \cos(2x) \) varies from -1 to 1, we find the range of \( u \): \[ u = 12^{-1} \text{ to } 12^{1} \Rightarrow \frac{1}{12} \text{ to } 12 \] 6. **Analyze the Function \( f(u) \):** We need to find the minimum and maximum values of \( f(u) \): \[ f(u) = \frac{1}{u} + u \] To find critical points, we differentiate: \[ f'(u) = -\frac{1}{u^2} + 1 \] Setting \( f'(u) = 0 \): \[ 1 = \frac{1}{u^2} \Rightarrow u^2 = 1 \Rightarrow u = 1 \] 7. **Evaluate \( f(u) \) at Critical Points and Endpoints:** - At \( u = \frac{1}{12} \): \[ f\left(\frac{1}{12}\right) = 12 + \frac{1}{12} = 12.0833 \] - At \( u = 1 \): \[ f(1) = 1 + 1 = 2 \] - At \( u = 12 \): \[ f(12) = \frac{1}{12} + 12 = 12.0833 \] 8. **Determine the Range of \( p \):** The minimum value of \( f(u) \) occurs at \( u = 1 \) and is \( 2 \). The maximum value occurs at \( u = \frac{1}{12} \) or \( u = 12 \) and is \( 12.0833 \). Therefore, the range of \( p \) is: \[ p \in [24, 24.0833] \] 9. **Count the Integral Values:** The integral values \( p \) can take are \( 24 \) (since \( 24.0833 \) does not reach 25). Thus, the number of integral values is: \[ \text{Number of integral values} = 1 \] ### Final Answer: The number of integral values that \( p \) can take is **1**.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) =ax ^(2) +bx+c, where a,b,c are integers and a gt 1 . If f (x) takes the value p, a prime for two distinct integer values of x, then the number of integer values of x for which f (x) takes the value 2p is :

If "sin" 2x, (1)/(2) " and cos" 2x are in A.P., then the general values of x are given by

If P=cos(cos x)+sin (cos x) , then the least and greatest value of P respectively.

Suppose the equation of circle is x^2 + y^2 - 8x - 6y + 24 = 0 and let (p, q) is any point on the circle, Then the no. of possible integral values of |p+q| is

Let a ,b in N and a > 1. Also p is a prime number. If a x^2+b x+c=p for any intergral values of x , then prove that ax^2+b x+c!=2p for any integral value of xdot

If int(dx)/(p^(2)sin^(2)x+r^(2)cos^(2)x)=(1)/(12)tan^(-1)(3tanx)+c then the value of p sinx+rcosx can be

Let P be minimum value of 9sin^2x+16cosec^2x and S be the minimum value of 16sin^2x+9cosec^2x then the value of (P+S)/2 is

If x^2+p x-444p=0 has integral roots where p is prime number, then find the value of p .

Let f(x)=[b^(2)+(a-1)b+2]x-int(sin^(2)x+cos^(4)x)dx be an increasing function of x""inRandbinR , then " a " can take value(s)

Let a denotes the number of non-negative values of p for which the equation p.2^x +2^(-x)=5 possess a unique solution. Then find the value of 'a'.