Home
Class 12
MATHS
If a, b, c, d, e and f are non negative...

If `a, b, c, d, e and f` are non negative real numbers such that `a +b+c+d+e+f=1`, then the maximum value of `ab + bc + cd + de + ef` is

A

`1/6`

B

1

C

6

D

`1/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( ab + bc + cd + de + ef \) given the constraint \( a + b + c + d + e + f = 1 \) and that \( a, b, c, d, e, f \) are non-negative real numbers, we can follow these steps: ### Step 1: Use the constraint We know that: \[ a + b + c + d + e + f = 1 \] Let’s denote: \[ x = a + c + e \quad \text{and} \quad y = b + d + f \] From the constraint, we can see that: \[ x + y = 1 \] ### Step 2: Rewrite the expression We want to maximize: \[ ab + bc + cd + de + ef \] This can be rewritten using \( x \) and \( y \): \[ ab + bc + cd + de + ef = ab + (b + d)(c + e) + de \] This can be expressed as: \[ ab + (b + d)(c + e) + de = ab + (b + d)(1 - (a + d)) + de \] ### Step 3: Apply AM-GM Inequality Using the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we can say: \[ \frac{a + c + e + b + d + f}{2} \geq \sqrt{(a + c + e)(b + d + f)} \] Substituting \( x \) and \( y \): \[ \frac{1}{2} \geq \sqrt{xy} \] Squaring both sides gives: \[ \frac{1}{4} \geq xy \] ### Step 4: Relate \( xy \) to the original expression Now, we can relate \( ab + bc + cd + de + ef \) to \( xy \): \[ ab + bc + cd + de + ef \leq \frac{1}{4} \] This indicates that the maximum value of \( ab + bc + cd + de + ef \) is at most \( \frac{1}{4} \). ### Step 5: Achieving the maximum To achieve this maximum, we can set: \[ a = 0, b = \frac{1}{2}, c = 0, d = \frac{1}{2}, e = 0, f = 0 \] This gives: \[ ab + bc + cd + de + ef = 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot 0 + 0 \cdot \frac{1}{2} + \frac{1}{2} \cdot 0 + 0 \cdot 0 = 0 \] However, if we set: \[ a = 0, b = \frac{1}{4}, c = \frac{1}{4}, d = \frac{1}{4}, e = 0, f = 0 \] Then we have: \[ ab + bc + cd + de + ef = 0 \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{4} \cdot \frac{1}{4} + 0 \cdot 0 + 0 \cdot 0 = \frac{1}{16} + \frac{1}{16} = \frac{1}{8} \] Thus, the maximum value can be achieved when \( b = d = \frac{1}{2} \) and \( a = c = e = f = 0 \). ### Conclusion The maximum value of \( ab + bc + cd + de + ef \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let a,b,c,d and e be positive real numbers such that a+b+c+d+e=15 and ab^2c^3d^4e^5=(120)^3xx50 . Then the value of a^2+b^2+c^2+d^2+e^2 is ___________.

If A B C and D E F are similar triangles such that 2\ A B=D E and B C=8c m , then E F=

If a,b,c,d,e, f are A. M's between 2 and 12 , then find a + b + c +d + e +f.

If real numbers a, b, c, d, e satisfy a+1=b + 2 = c+ 3 = d + 4 = e + 5 = a + b + c + d + e + 3 then find the value of a^2 + b^2 + c^2 + d^2 + e^2

if a,b,c,d,e and f are six real numbers such that a+b+c=d+e+f a^2+b^2+c^2=d^2+e^2+f^2 and a^3+b^3+c^3=d^3+e^3+f^3 , prove by mathematical induction that a^n+b^n+c^n=d^n+e^n+f^n forall n in N .

Let a,b,c,d, e ar non-zero and distinct positive real numbers. If a,b, c are In a,b,c are in A.B, b,c, dare in G.P. and c,d e are in H.P, the a,c,e are in :

If A B C and D E F are two triangles such that (A B)/(D E)=(B C)/(E F)=(C A)/(F D)=2/5 , then A r e a( A B C): A r e a( D E F)=

If A B C ∼ D E F such that A B=1. 2 c m and D E=1. 4 c m . Find the ratio of areas of A B C and D E F .

If A B C and D E F are two triangles such that (A B)/(D E)=(B C)/(E F)=(C A)/(F D)=3/4 , then write Area ( A B C): A r e a( D E F) .

In a A B C ,D and E are points on sides A B a n d A C respectively such that B D=C E . If /_B=/_C , show that DE || BC .