Home
Class 12
MATHS
If x + y=4 and x >=0, y>= 0 find the max...

If `x + y=4` and `x >=0, y>= 0` find the maximum value of `x^3y`.

A

12

B

27

C

20

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( x^3y \) given the constraint \( x + y = 4 \) and \( x \geq 0, y \geq 0 \), we can use the method of Lagrange multipliers or apply the AM-GM inequality. Here, we will use the AM-GM inequality for simplicity. ### Step-by-Step Solution: 1. **Set up the problem**: We have the constraint \( x + y = 4 \). We want to maximize \( z = x^3y \). 2. **Express \( y \) in terms of \( x \)**: From the constraint \( x + y = 4 \), we can express \( y \) as: \[ y = 4 - x \] 3. **Substitute \( y \) into \( z \)**: Now we substitute \( y \) into the expression for \( z \): \[ z = x^3(4 - x) = 4x^3 - x^4 \] 4. **Differentiate \( z \) with respect to \( x \)**: To find the maximum, we differentiate \( z \): \[ \frac{dz}{dx} = 12x^2 - 4x^3 \] 5. **Set the derivative to zero**: To find the critical points, we set the derivative equal to zero: \[ 12x^2 - 4x^3 = 0 \] Factoring out \( 4x^2 \): \[ 4x^2(3 - x) = 0 \] 6. **Solve for \( x \)**: This gives us: \[ 4x^2 = 0 \quad \Rightarrow \quad x = 0 \] \[ 3 - x = 0 \quad \Rightarrow \quad x = 3 \] 7. **Find corresponding \( y \) values**: For \( x = 0 \): \[ y = 4 - 0 = 4 \quad \Rightarrow \quad z = 0^3 \cdot 4 = 0 \] For \( x = 3 \): \[ y = 4 - 3 = 1 \quad \Rightarrow \quad z = 3^3 \cdot 1 = 27 \] 8. **Check the endpoints**: Since \( x \) must be non-negative and \( x + y = 4 \), we also check: - If \( x = 4 \), then \( y = 0 \): \[ z = 4^3 \cdot 0 = 0 \] 9. **Conclusion**: The maximum value of \( z = x^3y \) occurs at \( x = 3 \) and \( y = 1 \): \[ \text{Maximum value of } x^3y = 27 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x ,y in R and x^2+y^2+x y=1, then find the minimum value of x^3y+x y^3+4.

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

Let x and y be two real variable such that x >0 and x y=1 . Find the minimum value of x+y .

If 2x+3y=8 and x y=2 , find the value of 4x^2+9y^2

If x^2+y x^2=4 then find the xamimum value of (x^3+y^3)/(x+y)

If x^(2)-6x-27=0 and y^(2)-6y-40=0 , what is the maximum value of x+y ?

For any x ,y , in R^+,x y >0 . Then the minimum value of (2x)/(y^3)+(x^3y)/3+(4y^2)/(9x^4) is.

if x/y + y/x = -1 ( x, y != 0 ) , then the value of x^3 -y^3 is

For real numbers x and y, let M be the maximum value of expression x^4y + x^3y + x^2 y + x y + xy^2 + xy^3 + xy^4 , subject to x + y = 3 . Find [M] where [.] = G.I.F.

From the equation of the two lines, 4x + 3y +7=0 and 3x + 4y +8=0 , Find the mean of x and y .