Home
Class 12
MATHS
Maximum value of (sqrt(-3+4x-x^(2)) +4)^...

Maximum value of `(sqrt(-3+4x-x^(2)) +4)^(2) +(x-5)^(2)` (where `1le x le 3)` is

A

34

B

36

C

32

D

20

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Maximum value of (sqrt(-3+4x-x^2)+4)^2+(x-5)^2 (where 1 le x le 3) is

2 le 3x - 4 le 5 find x

|x^(2) -1|+|x^(2) - 4|le 3

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

Assertion (A): The maximum value of log_(1//3)(x^(2)-4x+5) is zero Reason (R): log_(a)x le 0 for x ge 1 and 0 lt a lt 1

Let 1 le x le 256 and M be the maximum value of (log_(2)x)^(4)+16(log_(2)x)^(2)log_(2)((16)/(x)) . The sum of the digits of M is :

The maximum value of [x(x-1)+1]^(1/3), 0 le x le 1 is:

The number of integral solution of (x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1)(x-5)^(5)(2x-7)^(6))le 0 is :

-5 le (2-3x)/4 le 9

The set of values of x satisfying |(x^(2)-5x+4)/(x^(2)-4)| le 1 is