Home
Class 12
MATHS
Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[...

Let `f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.]` denotes the greatest integer function. Then

A. (a)f (x) is increasing function
B. f (x) is decreasing function
C. The greatest value of f (x) is `(1)/(3)xx16.21`
D. The least value of f (x) is 2

A

f(x) is increasing function

B

f(x) is decreasing function

C

the greatest value of f(x) is `1/3 x 16.21`

D

the least value of f(x) is 2

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x^(2)+1)/([x]),1 lt x le 3.9.[.] denotes the greatest integer function. Then A. (a)f (x) is increasing function B. f (x) is decreasing function C. The greatest value of f (x) is (1)/(3)xx16.21 D. The least value of f (x) is 2

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

Let f(x)=(x^(2)+2)/([x]),1 le x le3 , where [.] is the greatest integer function. Then the least value of f(x) is

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

f(x)=sin^(-1)((2-3[x])/4) , which [*] denotes the greatest integer function.

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is