Home
Class 12
MATHS
The function f(x)=2log(x-2)-x^2+4x+1 inc...

The function `f(x)=2log(x-2)-x^2+4x+1` increases on the interval (a) `(1,\ 2)` (b) `(2,\ 3)` (c) `(1,\ 3)` (d) `(2,\ 4)`

A

(1,2)

B

(2,3)

C

`(5/2, 3)`

D

(2,4)

Text Solution

Verified by Experts

The correct Answer is:
B, C
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=log (1+x)-(2+x) is increasing in

The function f(x)=x^2-x+1 is increasing and decreasing in the intervals

If the function f(x)=2x^2-k x+5 is increasing on [1,\ 2] , then k lies in the interval (a) (-oo,\ 4) (b) (4,\ oo) (c) (-oo,\ 8) (d) (8,\ oo)

If the function f(x)=cos|x|-2a x+b increases along the entire number scale, then (a) a=b (b) a=1/2b (c) alt=-1/2 (d) a >-3/2

If the function f(x)=2tanx+(2a+1)(log)_e|secx|+(a-2)x is increasing on R , then (a) a in (1//2,\ oo) (b) a in (-1//2,\ 1//2) (c) a=1//2 (d) a in R

The domain of the function f(x)=sqrt(log_((|x|-1))(x^2+4x+4)) is (a) (-3,-1)uu(1,2) (b) (-2,-1)uu(2,oo) (c) (-oo,-3)uu(-2,-1)uu(2,oo) (d)none of these

A function g(x) is defined as g(x)=1/4f(2x^2-1)+1/2f(1-x^2) and f(x) is an increasing function. Then g(x) is increasing in the interval. (a) (-1,1) (b) (-sqrt(2/3),0)uu(sqrt(2/3),oo) (c) (-sqrt(2/3),sqrt(2/3)) (d) none of these

The maximum value of the function f(x)=((1+x)^(0. 6))/(1+x^(0. 6)) in the interval [0,1] is 2^(0. 4) (b) 2^(-0. 4) 1 (d) 2^(0. 6)

A value of C for which the conclusion of Mean Value Theorem holds for the function f(x)""=""(log)_e x on the interval [1, 3] is (1) 2(log)_3e (2) 1/2""(log)_e3 (3) (log)_3e (4) (log)_e3

The greatest value of the function f(x)=2. 3^(3x)-3^(2x). 4+2. 3^x in the interval [-1,1] is