Home
Class 12
MATHS
If f(x) = (tan^-1 x)^2+2/(sqrt(x^2+1) t...

If ` f(x) = (tan^-1 x)^2+2/(sqrt(x^2+1)` then f is increasing in

A

`(0, infty)`

B

[1,10]

C

[3,5]

D

[2,5]

Text Solution

AI Generated Solution

The correct Answer is:
To determine the intervals where the function \( f(x) = \left( \tan^{-1} x \right)^2 + \frac{2}{\sqrt{x^2 + 1}} \) is increasing, we need to find the derivative \( f'(x) \) and analyze where it is greater than or equal to zero. ### Step 1: Find the derivative \( f'(x) \) Given: \[ f(x) = \left( \tan^{-1} x \right)^2 + \frac{2}{\sqrt{x^2 + 1}} \] Using the chain rule and quotient rule, we differentiate \( f(x) \). 1. The derivative of \( \left( \tan^{-1} x \right)^2 \) is: \[ 2 \tan^{-1} x \cdot \frac{d}{dx}(\tan^{-1} x) = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2} \] 2. The derivative of \( \frac{2}{\sqrt{x^2 + 1}} \) using the quotient rule: \[ \frac{d}{dx} \left( \frac{2}{\sqrt{x^2 + 1}} \right) = 2 \cdot \frac{d}{dx} \left( (x^2 + 1)^{-1/2} \right) = 2 \cdot \left( -\frac{1}{2}(x^2 + 1)^{-3/2} \cdot 2x \right) = -\frac{2x}{(x^2 + 1)^{3/2}} \] Combining these, we have: \[ f'(x) = 2 \tan^{-1} x \cdot \frac{1}{1 + x^2} - \frac{2x}{(x^2 + 1)^{3/2}} \] ### Step 2: Set the derivative \( f'(x) \) greater than or equal to zero We want to find where: \[ f'(x) \geq 0 \] This leads to: \[ 2 \tan^{-1} x \cdot \frac{1}{1 + x^2} - \frac{2x}{(x^2 + 1)^{3/2}} \geq 0 \] ### Step 3: Factor out common terms We can factor out \( \frac{2}{1 + x^2} \): \[ \frac{2}{1 + x^2} \left( \tan^{-1} x - \frac{x}{\sqrt{x^2 + 1}} \right) \geq 0 \] Since \( \frac{2}{1 + x^2} > 0 \) for all \( x \), we focus on: \[ \tan^{-1} x - \frac{x}{\sqrt{x^2 + 1}} \geq 0 \] ### Step 4: Analyze the inequality We need to show that: \[ \tan^{-1} x \geq \frac{x}{\sqrt{x^2 + 1}} \] ### Step 5: Check the behavior of both sides 1. As \( x \to 0 \): \[ \tan^{-1}(0) = 0 \quad \text{and} \quad \frac{0}{\sqrt{0^2 + 1}} = 0 \] Hence, both sides are equal. 2. As \( x \to \infty \): \[ \tan^{-1}(x) \to \frac{\pi}{2} \quad \text{and} \quad \frac{x}{\sqrt{x^2 + 1}} \to 1 \] Thus, \( \tan^{-1}(x) > \frac{x}{\sqrt{x^2 + 1}} \). ### Step 6: Conclusion Since \( \tan^{-1} x \) is always greater than or equal to \( \frac{x}{\sqrt{x^2 + 1}} \) for \( x \geq 0 \), we conclude that \( f'(x) \geq 0 \) for \( x \in [0, \infty) \). Thus, the function \( f(x) \) is increasing in the interval: \[ \text{Answer: } (0, \infty) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that f(x) = 2x + cot^-1 x + log(sqrt(1+x^2)-x) is increasing in R

Show that f(x) = 2x + cot^-1 x + log(sqrt(1+x^2)-x) is increasing in R

let f(x)=sqrt(1+x^2) then

f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

The function f(x) = tan ^-1 x - In(1 + x^2) is increasing for

Show that f(x)=2x+cot^(-1)x+log(sqrt(1+x^2)-x) is increasing on R .

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x) = sqrt((1)/(tan^(-1)(x^(2)-4x + 3))) , then f(x) is continuous for

If f:RtoR,f(x)=(sqrt(x^(2)+1)-3x)/(sqrt(x^(2)+1)+x) then find the range of f(x) .

If f(x)=tan^(-1) ((2x)/(1-x^(2))), x in R "then "f'(x) is given by