Home
Class 12
MATHS
If I(m"," n)=int cos^(m)x*cos nx dx, sho...

If `I_(m"," n)=int cos^(m)x*cos nx dx`, show that `(m+n)I_(m","n)=cos^(m)x*sin nx+m I_((m-1","n-1))`

A

`(cos^(m)xsinnx)/(n)+c`

B

`cos^(m)xsinnx+c`

C

`(cos^(m)xsinnx)/(n)+c`

D

`-cos^(m)xcosnx+c`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(m)=int (sin x+cos x)^(m)dx , then show that m l_(m)=(sin x+ cos x)^(m-1)*(sin x- cos x)+2(m-1) I_(m-2)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_(m-2,n)(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))}

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

I_(m,n)=int(cos^mxcosnxdx=(cos^mxsinx)/(m+n)+f(m,n)I_(m-1,n-1) ,

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

The formula in which a certain integral involving some parameters in connected with some integrals of lower order is called a reduction formula. In most of the cases the reduction formula is obtained by the process of integrating by parts. Of course, in some cases the methods of differentiation are adopted.Now answer the question:If I_(m-2,n+2)=intsin^(m-2)xcos^(n+2)xdx and I_(m,n)=-(sin^(m-1)xcos^(n+1)x)/(n+1)+f(m,n)I_((m-2),(n+2)) , then f(2,3) is equal to (A) 1/2 (B) 1/3 (C) 1/4 (D) 1/5

Let I_(n)=int_(0)^(pi//2) cos^(n)x cos nx dx . Then, I_(n):I_(n+1) is equal to

If I(m) = int_0^pi ln(1-2m cos x + m^2)dx , then I(1)=

Differentiate sin^(m)x*cos^(n)x