Home
Class 12
MATHS
If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C...

If `inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C` , then f'' (x)=

A

`(f''(x))/(f(x))=24`

B

`(f''(x))/(f(x))-25`

C

range of f(x) is `[-sqrt(29),sqrt(29)]`

D

`(f(x))/(f'(x))=e^(cosbx)(asinx)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(ax).cosbx)dx

If inte^x\ (tanx+1)secx\ dx=e^x\ f(x)+C , then write the value of f(x) .

If int(1)/(x^(2)+2x+2)dx=f (x) +C , then f (x)=

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

int e^(f(x)) dx = (x^(6))/(6) +C , find f(x).

Given inte^x\ (tanx+1)secx\ dx=e^xf(x)+c , write f(x) satisfying the above.

If the integral int(lnx)/(x^(3))dx=(f(x))/(4x^(2))+C , where f(e )=-3 and C is the constant of integration, then the value of f(e^(2)) is equal to

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c , then (a) f(x) is an even function (b) f(x) is a bounded function (c) the range of f(x) is (0,1) (d) f(x) has two points of extrema

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

STATEMENT-1 : If int(1)/(f(x))dx=2log|f(x)|+c , then f(x)=(x)/(2) . STATEMENT-2 : When f(x)=(x)/(2) , then int(1)/(f(x))dx=int(2)/(x)dx=2log|x|+c STATEMENT-3 : inte^(x^(2))dx=e^(x^(2))+c