Home
Class 12
MATHS
If int(cos^(2)x)/(sin^(6)x)dx=Acot^(5)x+...

If `int(cos^(2)x)/(sin^(6)x)dx=Acot^(5)x+Bcot^(3)x+k`, then A+B equals

A

`(8)/(15)`

B

`-(8)/(15)`

C

`(15)/(8)`

D

`-(15)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos^2 x}{\sin^6 x} \, dx \) and express it in the form \( A \cot^5 x + B \cot^3 x + k \), we will follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ I = \int \frac{\cos^2 x}{\sin^6 x} \, dx \] We can rewrite \( \sin^6 x \) as \( \sin^2 x \cdot \sin^4 x \): \[ I = \int \frac{\cos^2 x}{\sin^2 x \cdot \sin^4 x} \, dx \] ### Step 2: Use trigonometric identities Using the identity \( \frac{\cos^2 x}{\sin^2 x} = \cot^2 x \) and \( \frac{1}{\sin^4 x} = \csc^4 x \): \[ I = \int \cot^2 x \cdot \csc^4 x \, dx \] ### Step 3: Rewrite \( \csc^4 x \) We know that \( \csc^2 x = 1 + \cot^2 x \), so: \[ \csc^4 x = (\csc^2 x)^2 = (1 + \cot^2 x)^2 = 1 + 2\cot^2 x + \cot^4 x \] Thus, we can rewrite the integral as: \[ I = \int \cot^2 x (1 + 2\cot^2 x + \cot^4 x) \, dx \] ### Step 4: Expand the integral Expanding the integral gives: \[ I = \int \cot^2 x \, dx + 2 \int \cot^4 x \, dx \] ### Step 5: Use substitution Let \( t = \cot x \). Then, \( \frac{dt}{dx} = -\csc^2 x \) or \( dx = -\frac{dt}{\csc^2 x} = -\frac{dt}{1 + t^2} \). Now, we can express the integrals in terms of \( t \): 1. For \( \int \cot^2 x \, dx \): \[ \int t^2 \left(-\frac{dt}{1+t^2}\right) = -\int \frac{t^2}{1+t^2} \, dt \] This simplifies to: \[ -\int \left(1 - \frac{1}{1+t^2}\right) dt = -t + \tan^{-1}(t) \] 2. For \( \int \cot^4 x \, dx \): \[ \int t^4 \left(-\frac{dt}{1+t^2}\right) = -\int \frac{t^4}{1+t^2} \, dt \] This can be simplified to: \[ -\int (t^2 - 1 + \frac{1}{1+t^2}) dt \] ### Step 6: Combine results Combining the results from the integrals gives us: \[ I = -\frac{t^3}{3} - t + \tan^{-1}(t) + \text{(terms from cot^4 integral)} \] ### Step 7: Substitute back Substituting \( t = \cot x \) back into the expression, we get: \[ I = -\frac{\cot^3 x}{3} - \cot x + \tan^{-1}(\cot x) + \text{(terms from cot^4 integral)} \] ### Step 8: Identify coefficients Comparing with the form \( A \cot^5 x + B \cot^3 x + k \), we find: - \( A = 0 \) - \( B = -\frac{1}{3} \) ### Step 9: Calculate \( A + B \) Thus, \( A + B = 0 - \frac{1}{3} = -\frac{1}{3} \). ### Final Answer: \[ A + B = -\frac{1}{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(2-3 cos x)/(sin^(2) x)dx

int(1)/(cos^(2) x-3 sin^(2) x)dx

int(sin 2x)/(5-cos^(2) x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int_(0)^(pi/2)(cos^(5)x dx)/(sin^(5)x+cos^(5)x)

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

int cos^(3) x. sin x dx

3. int(dx)/(sin^(2)x+cos^(2)x)

int(sin x+x cos x)/(x sin x)dx