Home
Class 12
MATHS
If f'(x)=x|sinx|AAx""in(0,pi/2)andf(0)=(...

If `f'(x)=x|sinx|AAx""in(0,pi/2)andf(0)=(1)/(sqrt3),` then f(x) will be

A

`-xcosx-sinx-(1)/(sqrt3)`

B

`(1)/(sqrt(3))-xcosx+sinx`

C

`sinx+xcosx-(2)/(sqrt(3))`

D

`sinx+xcosx+(2)/(sqrt(3))`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f'(sinx)lt0andf''(sinx)gt0,AAx in (0,(pi)/(2)) and g(x)=f(sinx)+f(cosx), then find the interval in which g(x) is increasing and decreasing.

f(x) = sinx - sin2x in [0,pi]

If f(x)=sinx ,AAx in [0,pi/2],f(x)+f(pi-x)=2,AAx in (pi/2,pi]a n df(x)=f(2pi-x),AAx in (pi,2pi], then the area enclosed by y=f(x) and the x-axis is (a) pi sq dot units (b) 2pi sq dot units (c) 2 sq dot units (d) 4 sq dot units

If lim_(trarrx)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

If lim_(trarrx) (e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 andf(0)=(1)/(2), then find the value of f'(0).

Let f:(0,1) in (0,1) be a differenttiable function such that f(x)ne 0 for all x in (0,1) and f((1)/(2))=(sqrt(3))/(2) . Suppose for all x, underset(x to x)lim(overset(1)underset(0)int sqrt(1(f(s))^(2))dxoverset(x)underset(0)int sqrt(1(f(s))^(2))ds)/(f(t)-f(x))=f(x) Then, the value of f((1)/(4)) belongs to

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

f:[0,5]rarrR,y=f(x) such that f''(x)=f''(5-x)AAx in [0,5] f'(0)=1 and f'(5)=7 , then the value of int_(1)^(4)f'(x)dx is