Home
Class 12
MATHS
int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))d...

`int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx` is equal to

A

`sec^(-1)((x^(2)+1)/(sqrt2x))+c`

B

`(1)/(sqrt(2))sec^(-1)((x^(2)+1)/(sqrt(2x)))+c`

C

`(1)/(sqrt(2))sec^(-1)((x^(2)+1)/(sqrt(2)))+c`

D

none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The value if int(x^(2)-1)/((x^(2)+1)(sqrt(x^(4)+1)))dx equal to (1)/(sqrt(2))sec^(-1)(f(x))+c , then f(x) is

int(1-x^(2))/((1+x^(2))sqrt(1+x^(4)))dx is equal to

int(1+x^(2))/(xsqrt(1+x^(4)))dx is equal to

int({x+sqrt(x^(2)+1)})^n/(sqrt(x^(2)+1))dx is equal to

int sqrt((x)/( 1-x))dx is equal to

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int(xsin^(-1)x^(2))/(sqrt(1-x^(4)))dx

int(x^(2)+1)/(xsqrt(x^(2)+2x-1)sqrt(1-x^(2)-x))dx is equal to

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

int_2^4 1/x dx is equal to