Home
Class 12
MATHS
The value of the integral inte^(sin^(2)...

The value of the integral `inte^(sin^(2)x(cosx+cos^3x)sinx dx` is

A

`(1)/(2)e^(sin^(2)x)(3-sin^(2)x)+c`

B

`e^(sin^(2))(1+(1)/(2)cos^(2)x)+c`

C

`e^(sin^(2)x)(3cos^(2)x+2sin^(2)x)+c`

D

`e^(sin^(2)x)(2cos^(2)x+3sin^(2)x)+c`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

he value of the integral inte^(sin^(2x))(cosx+cos^3x)sinx dx is

The value of the integral int_(a)^(a+pi//2) (|sin x|+|cosx|)dx is

The value of the integral int_0^pi(x^2sinx)/((2x-pi)(1+cos^2x))\ dx

The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(x)+C, C being the constant of integration. Then the maximum value of y=f(x^(2)), AA x in R is equal to

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

The value of the integral I=int_(0)^((pi)/(2))(cosx-sinx)/(10-x^(2)+(pix)/(2))dx is equal to

Find the integral int(2-3sinx)/(cos^2x)dx

The value of the integral int_(-pi//3)^(pi//3) (x sinx)/(cos^(2)x)dx , is

Evaluate the following integrals : int(sin^2x)/(1+cosx)dx

Find the integral int(2x-3cosx+e^x)dx