Home
Class 12
MATHS
int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f...

`int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C`, then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(sin^(6)x + cos^(6)x)/(sin^(2)xcos^(2)x)dx

int(5cos^3x+7sin^3x)/(3sin^2xcos^2x)dx

Suppose int(1-7cos^2x)/(sin^7xcos^2x)dx=(g(x))/(sin^7x)+c where C is arbitrary constant of integration.then find value of g'(0)+g''(pi/4)

If int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)(sinx+cosx)+Bln(f(x))+C , then A is equal to

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

if int(1-5sin^2x)/(cos^5xsin^2x)dx=f(x)/(cos^5x)+c then f(x)

If inte^(sinx).(xcos^(3)x-sinx)/(cos^(2)x)dx=e^(sinx)f(x)+C , such that f(0) =-1 then pi/3-f(pi/3) is equal to: