Home
Class 12
MATHS
If int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)...

If `int(dx)/(cos^(3)x-sin^(3)x)=Atan^(-1)(sinx+cosx)+Bln(f(x))+C`, then A is equal to

A

`(2)/(3)`

B

`(2)/(5)`

C

`-(2)/(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\cos^3 x - \sin^3 x} \] we will use the identity for the difference of cubes: \[ a^3 - b^3 = (a - b)(a^2 + b^2 + ab) \] where \( a = \cos x \) and \( b = \sin x \). Therefore, we can rewrite the denominator: \[ \cos^3 x - \sin^3 x = (\cos x - \sin x)(\cos^2 x + \sin^2 x + \cos x \sin x) \] Since \( \cos^2 x + \sin^2 x = 1 \), we have: \[ \cos^3 x - \sin^3 x = (\cos x - \sin x)(1 + \cos x \sin x) \] Now substituting this back into the integral, we get: \[ I = \int \frac{dx}{(\cos x - \sin x)(1 + \cos x \sin x)} \] Next, we will perform a substitution. Let: \[ t = \sin x + \cos x \] Then, differentiating \( t \): \[ dt = (\cos x - \sin x) dx \] We can also express \( \cos x \sin x \) in terms of \( t \). We know: \[ t^2 = \sin^2 x + \cos^2 x + 2\sin x \cos x = 1 + 2\sin x \cos x \] This gives: \[ \sin x \cos x = \frac{t^2 - 1}{2} \] Now substitute \( \sin x \cos x \) back into the integral: \[ I = \int \frac{dt}{t (1 + \frac{t^2 - 1}{2})} \] Simplifying the denominator: \[ 1 + \frac{t^2 - 1}{2} = \frac{2 + t^2 - 1}{2} = \frac{t^2 + 1}{2} \] Thus, we have: \[ I = \int \frac{2 \, dt}{t (t^2 + 1)} \] Now we can separate this into partial fractions: \[ \frac{2}{t(t^2 + 1)} = \frac{A}{t} + \frac{Bt + C}{t^2 + 1} \] Multiplying through by the denominator \( t(t^2 + 1) \): \[ 2 = A(t^2 + 1) + (Bt + C)t \] Expanding and collecting like terms, we can solve for \( A \), \( B \), and \( C \). Setting \( t = 0 \): \[ 2 = A(0^2 + 1) \implies A = 2 \] Now, we can find \( B \) and \( C \) by substituting other convenient values for \( t \) or by comparing coefficients. After finding \( A \), \( B \), and \( C \), we can integrate each term separately. The integral of \( \frac{2}{t} \) gives \( 2 \ln |t| \), and the integral of \( \frac{Bt + C}{t^2 + 1} \) gives \( B \tan^{-1}(t) + C \ln(t^2 + 1) \). Finally, we can express the result in the form: \[ I = 2 \ln |\sin x + \cos x| + B \tan^{-1}(\sin x + \cos x) + C \] From the problem statement, we know that: \[ I = A \tan^{-1}(\sin x + \cos x) + B \ln(f(x)) + C \] Thus, we find that \( A = 2 \). ### Final Answer: \[ A = 2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)(cosx-sinx)dx

If int (dx )/(cos ^(3) x-sin ^(3))=A tan ^(-1) (f (x)) +bln |(sqrt2+f (x))/(sqrt2-f (x))|+C where f (x) = sin x + cos x find the value of (12A+9sqrt2V)-3.

If int(cosx-sinx)/(sqrt(8-sin2x))dx=sin^(-1)((sinx+cosx)/(a))+C then a =

(cos^3x-sin^3x)/(cosx-sinx)

int(1-7cos^(2)x)/(sin^(7)xcos^(2)x)dx=(f(x))/((sinx)^(7))+C , then f(x) is equal to

inte^(x)(sinx+cosx)dx=?

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

If inte^(sinx).(xcos^(3)x-sinx)/(cos^(2)x)dx=e^(sinx)f(x)+C , such that f(0) =-1 then pi/3-f(pi/3) is equal to: