Home
Class 12
MATHS
The value of int((x^2+1))/((x^4-x^2+1)co...

The value of `int((x^2+1))/((x^4-x^2+1)cot^(-1)x(1/x)dx` will be `I n|cot^(-1)(x-1/x)+c|` b. `-I n|cot^(-1)(x-1/x)+c|` c. `I n|cot^(-1)(x+1/x)+c|` d. `I n|tan^(-1)(x-1/x)+c|`

A

`ln|cot^(-1)(x-(1)/(x))|+c`

B

`-ln|cot^(-1)(x-(1)/(x))|+c`

C

`ln|cot^(-1)(x+(1)/(x))|+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(tan^(-1)x)/(cot^(-1)(1-x+x^(2)))dx is____.

int_0^1cot^(- 1)(1-x+x^2)dx

The value of int_(-1)^1cot^-1((x+x^3+x^5)/(x^4+x^2+1)) dx is equal to

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

The value of 2tan^(-1)(cos e ctan^(-1)x-tancot^(-1)x) is equal to cot^(-1)x (b) cot^(-1)1/x tan^(-1)x (d) none of these

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .