Home
Class 12
MATHS
int(dx)/(sqrt(cos^(3)xcos(x-alpha))) is ...

`int(dx)/(sqrt(cos^(3)xcos(x-alpha)))` is equal to

A

`2sqrt(tanxsinalpha+cotalpha)+c`

B

`2cosecalphasqrt(tanxsinalpha+cosalpha)+c`

C

`2sqrt(sinalpha+tanxcosalpha)+c`

D

`2cosecalphasqrt(tanxcosalpha+sinalpha)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{\sqrt{\cos^3 x \cos(x - \alpha)}} \] we will proceed step by step. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{dx}{\sqrt{\cos^3 x \cos(x - \alpha)}} \] To simplify the expression under the square root, we can multiply and divide by \(\cos x\): \[ I = \int \frac{\cos x \, dx}{\cos x \sqrt{\cos^3 x \cos(x - \alpha)}} = \int \frac{\cos x \, dx}{\sqrt{\cos^4 x \cos(x - \alpha)}} \] ### Step 2: Simplify the Square Root Now, we can simplify the square root: \[ I = \int \frac{\cos x \, dx}{\sqrt{\cos^4 x} \sqrt{\cos(x - \alpha)}} = \int \frac{\cos x \, dx}{\cos^2 x \sqrt{\cos(x - \alpha)}} \] This simplifies to: \[ I = \int \frac{dx}{\cos x \sqrt{\cos(x - \alpha)}} \] ### Step 3: Use Trigonometric Identity Using the cosine subtraction formula, we have: \[ \cos(x - \alpha) = \cos x \cos \alpha + \sin x \sin \alpha \] Thus, we can rewrite the integral as: \[ I = \int \frac{dx}{\cos x \sqrt{\cos x \cos \alpha + \sin x \sin \alpha}} \] ### Step 4: Substitution Let’s make the substitution: \[ t^2 = \cos \alpha + \tan x \sin \alpha \] Differentiating both sides gives: \[ 2t \, dt = \sec^2 x \sin \alpha \, dx \] Thus, we can express \(dx\) in terms of \(dt\): \[ dx = \frac{2t}{\sin \alpha} dt \] ### Step 5: Substitute Back into the Integral Substituting back into the integral, we have: \[ I = \int \frac{2t}{\sin \alpha} \cdot \frac{1}{\sqrt{t^2}} dt = \int \frac{2t}{\sin \alpha} \cdot \frac{1}{t} dt \] This simplifies to: \[ I = \frac{2}{\sin \alpha} \int dt \] ### Step 6: Integrate The integral of \(dt\) is simply \(t\): \[ I = \frac{2}{\sin \alpha} t + C \] ### Step 7: Substitute Back for \(t\) Now, substitute back for \(t\): \[ t = \sqrt{\cos \alpha + \tan x \sin \alpha} \] Thus, we have: \[ I = \frac{2}{\sin \alpha} \sqrt{\cos \alpha + \tan x \sin \alpha} + C \] ### Final Answer The final result for the integral is: \[ I = \frac{2}{\sin \alpha} \sqrt{\cos \alpha + \tan x \sin \alpha} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(1)/(sqrt(sin^(3)xsin(x+alpha)))dx is equal to

int(tanx)/(sqrt(sin^(4)x+cos^(4)x))dx is equal to

int(1)/(sqrt(1+cos x))dx

int(sin^(3)x)/((1+cos^(2)x)sqrt(1+cos^(2)x+cos^(4))x)dx is equal to

int (1)/(sqrt(sin^(3) x cos x))dx =?

The value of int(dx)/(cos^3x sqrtsin2x) is equal to

If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, then

int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

int_(0)^(pi//2)(dx)/(1+e^(sqrt(2)cos(x+(pi)/(4)))) is equal to

int(sin x+cos x)/(sin(x -alpha))dx is equal to