Home
Class 12
MATHS
l=int(dx)/(1+e^(x)) is equal to...

`l=int(dx)/(1+e^(x))` is equal to

A

`log_(e)((1+e^(x))/(e^(x)))+c`

B

`log_(e)((e^(x))/(1+e^(x)))+c`

C

`log_(e)(e^(x))(e^(x)+1)+c`

D

`log_(e)(e^(2x)+1)+c`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^x+e^(-x)) is equal to

int(dx)/(x(x^n+1)) is equal to

int(x+1)^(2)e^(x)dx is equal to

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

inte^(xloga).e^(x)dx is equal to

int x^3 e^(x^2) dx is equal to

int(x^(3))/(x+1)dx is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int(dx)/(e^(x)+e^(-x)) equals