Home
Class 12
MATHS
Evaluate int(log(e)x)^(2)dx...

Evaluate `int(log_(e)x)^(2)dx`

A

`xlog_(e)x(log_(e)x+2)+c`

B

`xlog_(e)x(2log_(e)x+1)+c`

C

`x[(lnx)^(2)-2(lnx)+2]+c`

D

`x{(log_(e)x)^(2)-2(log_(e)x-2)}+c`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (\log_e x)^2 \, dx \), we will use integration by parts. Let's denote the integral as \( I \). ### Step 1: Set up the integration by parts We will use the formula for integration by parts: \[ \int u \, dv = uv - \int v \, du \] Let's choose: - \( u = (\log_e x)^2 \) (first function) - \( dv = dx \) (second function) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = 2 \log_e x \cdot \frac{1}{x} \, dx = \frac{2 \log_e x}{x} \, dx \] - Integrate \( dv \): \[ v = x \] ### Step 2: Apply integration by parts Now substituting into the integration by parts formula: \[ I = x (\log_e x)^2 - \int x \cdot \frac{2 \log_e x}{x} \, dx \] This simplifies to: \[ I = x (\log_e x)^2 - 2 \int \log_e x \, dx \] ### Step 3: Evaluate \( \int \log_e x \, dx \) We will again use integration by parts for \( \int \log_e x \, dx \): - Let \( u = \log_e x \) and \( dv = dx \). - Then, \( du = \frac{1}{x} \, dx \) and \( v = x \). Applying integration by parts again: \[ \int \log_e x \, dx = x \log_e x - \int x \cdot \frac{1}{x} \, dx \] This simplifies to: \[ \int \log_e x \, dx = x \log_e x - \int 1 \, dx = x \log_e x - x + C \] ### Step 4: Substitute back into the original integral Now substitute \( \int \log_e x \, dx \) back into the expression for \( I \): \[ I = x (\log_e x)^2 - 2 \left( x \log_e x - x \right) \] Distributing the -2: \[ I = x (\log_e x)^2 - 2x \log_e x + 2x \] ### Step 5: Final expression Factoring out \( x \): \[ I = x \left( (\log_e x)^2 - 2 \log_e x + 2 \right) + C \] Thus, the final result is: \[ \int (\log_e x)^2 \, dx = x \left( (\log_e x)^2 - 2 \log_e x + 2 \right) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int 5^(log _(e)x)dx

Evaluate int 2^(log_(4)x)dx

int((log _(e)x)^(3))/(x)dx

Evaluate : int(log_(e)(1+sin^(2)x))/(cos^(2)x)dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

Evaluate int(log_(e)(x+sqrt(x^(2)+1)))/(sqrt(x^(2)+1))dx.

Evaluate : int ((1+"log"x)^(2))/(x)-" dx "

int log_(e)(a^(x))dx=

Evaluate: int((log)_(e x)edot(log)_(e^2)edot(log)_(e^3x)e)/x dx