Home
Class 12
MATHS
int(dx)/(x.logx.log(logx))=...

`int(dx)/(x.logx.log(logx))=`

A

`log[log(logx)]+c`

B

`log(logx)+c`

C

`log[log(log(1//x))]+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a) y/x(1n x^(x-1))+21 nx1n(1nx)) (b) y/x(logx)^("log"(logx))(2log(logx)+1) (c) y/(x1nx)[(1nx)^2+21 n(1nx)] (d) y/x(logy)/(logx)[2log(logx)+1]

d/(dx) log(logx) = ?

d/(dx) log(logx) = ?

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Prove that : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c

Evlauate : int (1)/(x[6(logx)^(2)+7logx+2]] dx= log |(1+log x^(2))/(2+log x^(3))|+c

Evaluate int((cosx)/(x)-logx^(sinx))dx .

int(dx)/(x(1+(logx)^(2))) equals

int(x^(2)(1-logx))/((logx)^(4)-x^(4))dx equals