Home
Class 12
MATHS
inte^(x)sinxcosxcos2xcos4xdx...

`inte^(x)sinxcosxcos2xcos4xdx`

A

`(e^(x))/(4sqrt(65))sin(8x-tan^(-1)8)+c`

B

`(e^(x))/(8sqrt(65))sin(8x-tan^(-1)8)+c`

C

`(e^(x))/(8)sin(8x-tan^(-1)8)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \sin x \cos x \cos 2x \cos 4x \, dx \), we will follow these steps: ### Step 1: Simplify the Integral We start by rewriting the integral: \[ I = \int e^x \sin x \cos x \cos 2x \cos 4x \, dx \] We can use the identity \( \sin x \cos x = \frac{1}{2} \sin 2x \): \[ I = \int e^x \cdot \frac{1}{2} \sin 2x \cos 2x \cos 4x \, dx \] This can be simplified further using \( \sin 2x \cos 2x = \frac{1}{2} \sin 4x \): \[ I = \frac{1}{4} \int e^x \sin 4x \cos 4x \, dx \] ### Step 2: Simplify Further Using the identity \( \sin 4x \cos 4x = \frac{1}{2} \sin 8x \): \[ I = \frac{1}{8} \int e^x \sin 8x \, dx \] ### Step 3: Use Integration by Parts Now, we apply the formula for the integral \( \int e^{ax} \sin bx \, dx \): \[ \int e^{ax} \sin bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C \] In our case, \( a = 1 \) and \( b = 8 \): \[ \int e^x \sin 8x \, dx = \frac{e^x}{1^2 + 8^2} (1 \sin 8x - 8 \cos 8x) + C \] Calculating \( 1^2 + 8^2 = 1 + 64 = 65 \): \[ \int e^x \sin 8x \, dx = \frac{e^x}{65} (\sin 8x - 8 \cos 8x) + C \] ### Step 4: Substitute Back Now substituting back into our expression for \( I \): \[ I = \frac{1}{8} \cdot \frac{e^x}{65} (\sin 8x - 8 \cos 8x) + C \] This simplifies to: \[ I = \frac{e^x}{520} (\sin 8x - 8 \cos 8x) + C \] ### Step 5: Final Expression Thus, the final expression for the integral is: \[ I = \frac{e^x}{520} (\sin 8x - 8 \cos 8x) + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(4x)sin3xdx

intcos2xcos4xdx

Evaluate: intsinxcosxcos2xcos4xcos8xdx

intsin^2xcos2xdx

intsin4xcos3xdx

intsin3xcos2xdx

If I=lambda int_0^(pi/4)cos2xcos4xcos6xdx , then lambda is equal to 5 (b) 20 (c) 10 (d) 5/2

solve intcos5xcos2xdx

Evaluate: int1/(sin^4x+sin^2xcos^2x+cos^4x)\ dx

intsin^3xcos^3xdx