Home
Class 12
MATHS
I=int(e^(x))/((e^(x)+1)^(1//4))dx is equ...

`I=int(e^(x))/((e^(x)+1)^(1//4))dx` is equal to

A

`(e^(2x)-e^(-2x))/(2)+c`

B

`(e^(2x)+e^(-2x))/(2)+c`

C

`(e^(x)-e^(2x))/(2)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{e^x}{(e^x + 1)^{1/4}} \, dx \), we will use substitution and integration techniques. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = e^x + 1 \). Then, differentiating both sides gives us: \[ dt = e^x \, dx \quad \Rightarrow \quad dx = \frac{dt}{e^x} \] Since \( e^x = t - 1 \), we can substitute this back into our expression for \( dx \): \[ dx = \frac{dt}{t - 1} \] ### Step 2: Rewrite the Integral Now, substituting \( t \) into the integral, we have: \[ I = \int \frac{e^x}{(e^x + 1)^{1/4}} \, dx = \int \frac{(t - 1)}{t^{1/4}} \cdot \frac{dt}{t - 1} \] This simplifies to: \[ I = \int \frac{dt}{t^{1/4}} \] ### Step 3: Simplify the Integral The integral can be rewritten as: \[ I = \int t^{-1/4} \, dt \] ### Step 4: Integrate Using the power rule for integration, we have: \[ I = \frac{t^{-1/4 + 1}}{-1/4 + 1} + C = \frac{t^{3/4}}{3/4} + C = \frac{4}{3} t^{3/4} + C \] ### Step 5: Substitute Back Now, substituting back \( t = e^x + 1 \): \[ I = \frac{4}{3} (e^x + 1)^{3/4} + C \] ### Final Answer Thus, the integral evaluates to: \[ I = \frac{4}{3} (e^x + 1)^{3/4} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

If int_(0)^(1) (e^(x))/( 1+x) dx = k , then int_(0)^(1) (e^(x))/( (1+x)^(2)) dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

int_(0)^(1) ( dx)/( e^(x) + e^(-x)) is equal to

I=int_(0)^(2)(e^(f(x)))/(e^(f(x))+e^(f(2-x)))dx is equal to

int sqrt(e^(x)-1)dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

The value of int_(log1//2)^(log2)sin{(e^(x)-1)/(e^(x)+1)}dx is equal to