Home
Class 12
MATHS
int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)d...

`int((1+sqrt(tanx))(1+tan^(2)x))/(2tanx)dx` equals to

A

`logsqrt(tanx)+sqrt(tanx)+c`

B

`logtan^(2)x+(1)/(2sqrt(tanx))+c`

C

`log|tanx|+2sqrt(tanx)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{(1 + \sqrt{\tan x})(1 + \tan^2 x)}{2 \tan x} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We know that \(1 + \tan^2 x = \sec^2 x\). Therefore, we can rewrite the integral as: \[ I = \int \frac{(1 + \sqrt{\tan x}) \sec^2 x}{2 \tan x} \, dx. \] ### Step 2: Substitute \( \tan x = t \) Let \( t = \tan x \). Then, the derivative is: \[ \frac{dt}{dx} = \sec^2 x \implies dx = \frac{dt}{\sec^2 x}. \] Substituting \(dx\) into the integral gives: \[ I = \int \frac{(1 + \sqrt{t}) \sec^2 x}{2t} \cdot \frac{dt}{\sec^2 x} = \int \frac{(1 + \sqrt{t})}{2t} \, dt. \] ### Step 3: Split the integral Now we can split the integral into two parts: \[ I = \frac{1}{2} \int \frac{1}{t} \, dt + \frac{1}{2} \int \frac{\sqrt{t}}{t} \, dt = \frac{1}{2} \int \frac{1}{t} \, dt + \frac{1}{2} \int t^{-\frac{1}{2}} \, dt. \] ### Step 4: Integrate each term 1. The first integral: \[ \int \frac{1}{t} \, dt = \log |t| + C_1. \] 2. The second integral: \[ \int t^{-\frac{1}{2}} \, dt = 2t^{\frac{1}{2}} + C_2. \] ### Step 5: Combine the results Putting it all together, we have: \[ I = \frac{1}{2} \left( \log |t| + 2\sqrt{t} \right) + C. \] ### Step 6: Substitute back \(t = \tan x\) Now, substituting back \(t = \tan x\): \[ I = \frac{1}{2} \left( \log |\tan x| + 2\sqrt{\tan x} \right) + C. \] ### Step 7: Final simplification This simplifies to: \[ I = \frac{1}{2} \log |\tan x| + \sqrt{\tan x} + C. \] ### Final Answer Thus, the final answer is: \[ I = \frac{1}{2} \log |\tan x| + \sqrt{\tan x} + C. \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

inte^(-x)(1-tanx)secx dx is equal to

int(sec^(2)x)/(sqrt(tanx))dx

int(sqrt(tanx))/(sinxcosx)dx is equal to.

int(cos4x-1)/(cotx-tanx)dx is equal to

cosec^(-1)((1+tan ^2x)/(2tanx))

intsqrt(1+2tanx(secx+tanx))dx=

int 1/(1+tanx) dx

Evaluate int (tanx+tan^3x)/(1+tan^3x)dx

int[1+tanx.tan(x+alpha)]dx is equal to