Home
Class 12
MATHS
If the antiderivative of x^3/sqrt(1+2x^2...

If the antiderivative of `x^3/sqrt(1+2x^2)` which passes through `(1, 2)` is `1/m(1+2x^2)^(1/2)(x^2-1)+2,` then the value of `m` is

A

1

B

3

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( m \) such that the antiderivative of \( \frac{x^3}{\sqrt{1 + 2x^2}} \) that passes through the point \( (1, 2) \) is given by the expression: \[ \frac{1}{m} (1 + 2x^2)^{1/2} (x^2 - 1) + 2 \] ### Step 1: Set up the integral We start with the integral: \[ y = \int \frac{x^3}{\sqrt{1 + 2x^2}} \, dx \] ### Step 2: Use substitution Let \( t^2 = 1 + 2x^2 \). Then, differentiating both sides gives: \[ 2t \frac{dt}{dx} = 4x \implies \frac{dt}{dx} = \frac{2x}{t} \implies dt = \frac{2x}{t} \, dx \implies dx = \frac{t}{2x} \, dt \] ### Step 3: Express \( x^3 \) in terms of \( t \) From \( t^2 = 1 + 2x^2 \), we can express \( x^2 \) as: \[ x^2 = \frac{t^2 - 1}{2} \] Thus, \( x^3 = x \cdot x^2 = x \cdot \frac{t^2 - 1}{2} \). ### Step 4: Rewrite the integral Substituting \( x^3 \) and \( dx \) into the integral gives: \[ y = \int \frac{\left( \frac{t^2 - 1}{2} \right) x \cdot \frac{t}{2x}}{\sqrt{t^2}} \, dt \] The \( x \) cancels out, and we have: \[ y = \frac{1}{4} \int (t^2 - 1) \, dt \] ### Step 5: Integrate Now we integrate: \[ y = \frac{1}{4} \left( \frac{t^3}{3} - t \right) + C \] ### Step 6: Substitute back for \( t \) Substituting back \( t = \sqrt{1 + 2x^2} \): \[ y = \frac{1}{4} \left( \frac{(1 + 2x^2)^{3/2}}{3} - \sqrt{1 + 2x^2} \right) + C \] ### Step 7: Simplify This simplifies to: \[ y = \frac{1}{12} (1 + 2x^2)^{3/2} - \frac{1}{4} \sqrt{1 + 2x^2} + C \] ### Step 8: Find the constant \( C \) We know that the function passes through the point \( (1, 2) \): \[ 2 = \frac{1}{12} (1 + 2 \cdot 1^2)^{3/2} - \frac{1}{4} \sqrt{1 + 2 \cdot 1^2} + C \] Calculating \( (1 + 2 \cdot 1^2) = 3 \): \[ 2 = \frac{1}{12} (3)^{3/2} - \frac{1}{4} \cdot \sqrt{3} + C \] Calculating \( (3)^{3/2} = 3\sqrt{3} \): \[ 2 = \frac{3\sqrt{3}}{12} - \frac{\sqrt{3}}{4} + C \] Finding a common denominator (12): \[ 2 = \frac{3\sqrt{3}}{12} - \frac{3\sqrt{3}}{12} + C \] Thus, \( C = 2 \). ### Step 9: Final expression Now we have: \[ y = \frac{1}{12} (1 + 2x^2)^{3/2} - \frac{1}{4} \sqrt{1 + 2x^2} + 2 \] ### Step 10: Compare with given expression The given expression is: \[ \frac{1}{m} (1 + 2x^2)^{1/2} (x^2 - 1) + 2 \] By comparing coefficients, we find that: \[ \frac{1}{m} = \frac{1}{6} \implies m = 6 \] ### Conclusion Thus, the value of \( m \) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let x+(1)/(x)=2, y+(1)/(y)=-2 and sin^(-1)x+cos^(-1)y=m pi , then the value of m is

If m_(1) and m_(2) are slopes of the tangents to the ellipse (x^(2))/(16)+(y^(2))/(9)=1 which passes through (5, 4), then the value of (m_(1)+m_(2))-(m_(1)m_(2)) is equal to

The value of sin(cot^-1x)= (A) sqrt(1+x^2) (B) x (C) (1+x^2)^(-3/2) (D) (1+x^2)^(-1/2)

If y=(x^(2))/(2)+(1)/(2)xsqrt(x^(2)+1)+lnsqrt(x+sqrt(x^(2)+1)) then the value of xy'+logy' is

Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a_1x+a_2x^2+ and that a1 ^2=2a_2 then the value of n is.

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all real values of m.

If m_1, m_2, are slopes of the tangens to the hyperbola x^(2)//25-y^(2)//16=1 which pass through the point (6, 2) then

Find the value of x for which the matrix A=[(2//x,-1,2),(1,x,2x^(2)),(1,1//x,2)] is singular.

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

The antiderivative of (2^x)/(sqrt(1-4^x)) w.r.t x is (A) (log)_2edotsin^(-1)(2^x)+k (B) ""sin^(-1)(2^x)+k (C) ""cos^(-1)(2^x)dot1/((log)_e2)+k (D) none of these