Home
Class 12
MATHS
intsqrt(1+2tanx(secx+tanx))dx=...

`intsqrt(1+2tanx(secx+tanx))dx=`

A

`log_(e)|sec^(2)x+tanxsecx|+c`

B

`log_(e)|1+tanx(secx-tanx|+c`

C

`log_(e)|sinx(secx-tanx)|+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{1 + 2\tan x (\sec x + \tan x)} \, dx \), we can follow these steps: ### Step 1: Use the Pythagorean Identity We know from trigonometric identities that: \[ 1 + \tan^2 x = \sec^2 x \] Thus, we can express \( 1 \) as: \[ 1 = \sec^2 x - \tan^2 x \] ### Step 2: Substitute in the Integral Substituting this into the integral, we have: \[ \int \sqrt{\sec^2 x - \tan^2 x + 2\tan x (\sec x + \tan x)} \, dx \] ### Step 3: Simplify the Expression Inside the Square Root Now, simplify the expression inside the square root: \[ \sec^2 x - \tan^2 x + 2\tan x (\sec x + \tan x) \] This can be rewritten as: \[ \sec^2 x - \tan^2 x + 2\tan x \sec x + 2\tan^2 x \] Combining like terms gives: \[ \sec^2 x + \tan^2 x + 2\tan x \sec x \] ### Step 4: Factor the Expression Notice that: \[ \sec^2 x + \tan^2 x + 2\tan x \sec x = (\sec x + \tan x)^2 \] Thus, we can rewrite our integral as: \[ \int \sqrt{(\sec x + \tan x)^2} \, dx \] ### Step 5: Simplify the Integral Taking the square root gives: \[ \int |\sec x + \tan x| \, dx \] Assuming \( \sec x + \tan x > 0 \) in the interval of integration, we can drop the absolute value: \[ \int (\sec x + \tan x) \, dx \] ### Step 6: Integrate The integral of \( \sec x + \tan x \) is a known result: \[ \int \sec x \, dx = \ln |\sec x + \tan x| + C \] Thus: \[ \int (\sec x + \tan x) \, dx = \ln |\sec x + \tan x| + C \] ### Final Answer Therefore, the final result is: \[ \int \sqrt{1 + 2\tan x (\sec x + \tan x)} \, dx = \ln |\sec x + \tan x| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

intsecx(secx+tanx)dx

intsqrt[tanx].dx

intsqrt(tanx)secxcosecxdx

Evaluate int(tanx)/(secx+tanx)dx

Evaluate the following integrals : int(tanx)/(secx+tanx)dx

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

Evaluate the definite integrals int_0^pi (xtanx)/(secx+tanx)dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx

Evaluate: int_0^pi(xtanx)/(secx+tanx)\ dx

intsec^2x/((2+tanx)(3+tanx))dx