Home
Class 12
MATHS
l=inttan^(-1)""((1)/(x^(2)-x+1))dx is eq...

`l=inttan^(-1)""((1)/(x^(2)-x+1))dx` is equal to

A

`xtan^(-1)((1)/(x^(2)-x+1))+log_(e)""(x)/((2-x)sqrt(1+x^(2))sqrt(2x-x^(2)))+c`

B

`xcot^(-1)(x^(2)-x+1)+log_(e)""(x)/((2-x)sqrt(1+x^(2))sqrt(2x-x^(2)))+c`

C

`tan^(-1)((1)/(x^(2)-x+1))+c`

D

`xtan^(-1)""(1)/(x^(2)-x+1)-tan^(-1)(1-x)+(1)/(2)log""(x^(2)-2x+2)/(x^(2)+1)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \tan^{-1}\left(\frac{1}{x^2 - x + 1}\right) dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rearranging the Integral**: We start with the integral: \[ I = \int \tan^{-1}\left(\frac{1}{x^2 - x + 1}\right) dx \] We can rewrite the denominator: \[ x^2 - x + 1 = (x - \frac{1}{2})^2 + \frac{3}{4} \] However, for simplicity, we will proceed with the original form. 2. **Using the Formula for Inverse Tangent**: Recall the formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] We can express our integral as: \[ I = \int \left( \tan^{-1}(x) + \tan^{-1}(1 - x) \right) dx \] 3. **Splitting the Integral**: We can split the integral into two parts: \[ I = \int \tan^{-1}(x) dx + \int \tan^{-1}(1 - x) dx \] Let’s denote: \[ I_1 = \int \tan^{-1}(x) dx \quad \text{and} \quad I_2 = \int \tan^{-1}(1 - x) dx \] 4. **Solving \( I_1 \) using Integration by Parts**: For \( I_1 \), we will use integration by parts: \[ u = \tan^{-1}(x), \quad dv = dx \] Then, \[ du = \frac{1}{1 + x^2} dx, \quad v = x \] Applying integration by parts: \[ I_1 = x \tan^{-1}(x) - \int \frac{x}{1 + x^2} dx \] 5. **Evaluating the Remaining Integral**: The integral \( \int \frac{x}{1 + x^2} dx \) can be solved by substitution: Let \( w = 1 + x^2 \), then \( dw = 2x dx \) or \( dx = \frac{dw}{2x} \). Thus, \[ \int \frac{x}{1 + x^2} dx = \frac{1}{2} \ln|1 + x^2| + C \] Therefore, \[ I_1 = x \tan^{-1}(x) - \frac{1}{2} \ln|1 + x^2| + C \] 6. **Solving \( I_2 \)**: For \( I_2 \), we can use a similar approach: Let \( t = 1 - x \), then \( dt = -dx \). Thus, \[ I_2 = -\int \tan^{-1}(t) dt \] This will yield: \[ I_2 = -\left( t \tan^{-1}(t) - \frac{1}{2} \ln|1 + t^2| \right) + C \] Substituting back \( t = 1 - x \): \[ I_2 = -(1 - x) \tan^{-1}(1 - x) + \frac{1}{2} \ln|1 + (1 - x)^2| + C \] 7. **Combining \( I_1 \) and \( I_2 \)**: Finally, we combine both integrals: \[ I = I_1 + I_2 \] After simplification, we can express the final answer in terms of \( x \). ### Final Result: The final result of the integral is: \[ I = x \tan^{-1}(x) - (1 - x) \tan^{-1}(1 - x) - \frac{1}{2} \ln|1 + x^2| + \frac{1}{2} \ln|1 + (1 - x)^2| + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

int_(-1)^(1)(x^2+1)dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(2sinx+(1)/(x))dx is equal to

intsqrt((x-1)/(x+1))dx is equal to

int(1)/(x(1+root(3)(x))^(2))dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "