Home
Class 12
MATHS
int(dx)/((x^3-1)^(2/3)x^2) is equal to...

`int(dx)/((x^3-1)^(2/3)x^2)` is equal to

A

`(3)/(4)(1+(1)/(x^(2)))^(4//3)+c`

B

`(x^(3)-1)^(3//2)+c`

C

`3(1+(1)/(x^(3)))^(1//3)+c`

D

`(1-(1)/(x^(3)))^(1//3)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{dx}{(x^3 - 1)^{\frac{2}{3}} x^2} \] we will follow these steps: ### Step 1: Rewrite the Integral We can rewrite the integral as: \[ I = \int \frac{1}{x^2 (x^3 - 1)^{\frac{2}{3}}} \, dx \] ### Step 2: Factor out \(x^3\) from the Denominator Next, we factor out \(x^3\) from the term \((x^3 - 1)\): \[ I = \int \frac{1}{x^2 \left(x^3 \left(1 - \frac{1}{x^3}\right)\right)^{\frac{2}{3}}} \, dx \] This simplifies to: \[ I = \int \frac{1}{x^2 x^{2} \left(1 - \frac{1}{x^3}\right)^{\frac{2}{3}}} \, dx = \int \frac{1}{x^4 \left(1 - \frac{1}{x^3}\right)^{\frac{2}{3}}} \, dx \] ### Step 3: Substitution Let \(t = 1 - \frac{1}{x^3}\). Then, we differentiate \(t\): \[ dt = \frac{3}{x^4} \, dx \quad \Rightarrow \quad dx = \frac{x^4}{3} \, dt \] ### Step 4: Substitute in the Integral Now substituting \(t\) and \(dx\) into the integral: \[ I = \int \frac{1}{x^4 t^{\frac{2}{3}}} \cdot \frac{x^4}{3} \, dt = \frac{1}{3} \int \frac{1}{t^{\frac{2}{3}}} \, dt \] ### Step 5: Integrate Now we integrate: \[ \int t^{-\frac{2}{3}} \, dt = \frac{t^{\frac{1}{3}}}{\frac{1}{3}} + C = 3t^{\frac{1}{3}} + C \] Thus, \[ I = \frac{1}{3} \cdot 3t^{\frac{1}{3}} + C = t^{\frac{1}{3}} + C \] ### Step 6: Substitute Back Finally, substituting back \(t = 1 - \frac{1}{x^3}\): \[ I = \left(1 - \frac{1}{x^3}\right)^{\frac{1}{3}} + C \] ### Final Answer The final result of the integral is: \[ \int \frac{dx}{(x^3 - 1)^{\frac{2}{3}} x^2} = \left(1 - \frac{1}{x^3}\right)^{\frac{1}{3}} + C \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(x^(3)-1)/(x^(3)+x) dx is equal to:

The value of the integral I=int_((1)/(sqrt3))^(sqrt3)(dx)/(1+x^(2)+x^(3)+x^(5)) is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int x^3 e^(x^2) dx is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(xlnx)/(x^(2)-1)^(3//2) dx equals

int(x^3-x)/(1+x^6)dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to