Home
Class 12
MATHS
int(log(1+cosx)-xtan((x)/(2)))dx=...

`int(log(1+cosx)-xtan((x)/(2)))dx=`

A

`xln(1+cosx)+c`

B

`xln(1+secx)+c`

C

`x^(2)ln(1+cosx)+c`

D

`xlntanx+c`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int((log x-1)/(1+(logx)^(2)))^(2)dx

If int_(0)^(1) (log(1+x)/(1+x^(2))dx=

Evaluate: int(log(1+1/x))/(x(1+x))dx

Evaluate: int(log(1+1/x))/(x(1+x))dx

int_(0)^(log 2)(e^(x))/(1+e^(x))dx=

int cosx/(1+cosx) \ dx

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

int_0^pi dx/(1+10^(cosx))+int_(-1)^1 log((2-x)/(2+x))dx= (A) pi/2 (B) -pi (C) 0 (D) none of these

The value int { ln(1+sinx)+xtan(pi/4-x/2)} dx is equal to (A) x ln(1+sinx)+C (B) ln(1+sinx)+C (C) -x ln(1+sinx)+C (D) ln(1-sinx)+C

Evaluate int_(-1)^(1) log ((2-x)/( 2+x)) dx