Home
Class 12
MATHS
int(x^6(x+1)dx)/(sqrt(5x^(10)+6x^9+x^(4)...

`int(x^6(x+1)dx)/(sqrt(5x^(10)+6x^9+x^(4)))=`

A

`(sqrt(5x^(6)+6x^(5)+1))/(15)+c`

B

`(sqrt(5x^(6)+6x^(5)+1))/(30)+c`

C

`(sqrt(5x^(8)+6x^(7)+x^(2)))/(15)+c`

D

`(5X^(10)+6x^(5)+x^(4))^(1//2)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^6 (x + 1) \, dx}{\sqrt{5x^{10} + 6x^9 + x^4}}, \] we will follow these steps: ### Step 1: Simplify the Denominator First, we simplify the expression under the square root in the denominator: \[ \sqrt{5x^{10} + 6x^9 + x^4} = \sqrt{x^4(5x^6 + 6x^5 + 1)} = x^2 \sqrt{5x^6 + 6x^5 + 1}. \] ### Step 2: Rewrite the Integral Now, we can rewrite the integral: \[ I = \int \frac{x^6 (x + 1) \, dx}{x^2 \sqrt{5x^6 + 6x^5 + 1}} = \int \frac{x^4 (x + 1) \, dx}{\sqrt{5x^6 + 6x^5 + 1}}. \] ### Step 3: Use Substitution Let \[ t^2 = 5x^6 + 6x^5 + 1. \] Now, differentiate both sides with respect to \(x\): \[ 2t \frac{dt}{dx} = 30x^5 + 30x^4 \implies \frac{dt}{dx} = \frac{30x^5 + 30x^4}{2t} = \frac{15(x^5 + x^4)}{t}. \] Thus, we can express \(dx\) as: \[ dx = \frac{2t}{15(x^5 + x^4)} dt. \] ### Step 4: Substitute into the Integral Substituting \(dx\) back into the integral, we have: \[ I = \int \frac{x^4 (x + 1) \cdot \frac{2t}{15(x^5 + x^4)} dt}{\sqrt{t^2}}. \] Since \(\sqrt{t^2} = t\) (assuming \(t > 0\)), we can simplify: \[ I = \int \frac{2x^4 (x + 1)}{15(x^5 + x^4)} dt. \] The \(x^4\) terms will cancel out: \[ I = \int \frac{2(x + 1)}{15} dt. \] ### Step 5: Integrate Now we can integrate: \[ I = \frac{2}{15} \int (x + 1) dt. \] ### Step 6: Resubstitute Finally, we substitute back \(t\): \[ I = \frac{2}{15} (t + C) = \frac{2}{15} \left(\sqrt{5x^6 + 6x^5 + 1} + C\right). \] ### Final Answer Thus, the final result is: \[ I = \frac{2}{15} \sqrt{5x^6 + 6x^5 + 1} + C. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

int(6x-5)/(sqrt(3x^2-5x+1))dx

I=int x^(5)*(sqrt(3+5x^(6)))dx

Evaluate int(2x^(2)+5x+4)/(sqrt(x^(2)+x+1))dx .

Evaluate int(x^(2)dx)/(sqrt(4+x^(6)))

Evaluate: int ( (6x+ 5))/( sqrt(6+ x-2x^(2)))dx

Evaluate int(x^(6)+x^(4)+x^(2))sqrt(2x^(4)+3x^(2)+6)dx .

int (x) /(sqrt(1+x^(4)) ) dx

int_(-1)^(2) sqrt(5x+6)dx

int(3x+5)/(sqrt(7x+9)) dx

Evaluate int (dx)/((x-3)^(3)sqrt(x^(2)-6x+10)) .