Home
Class 12
MATHS
If int(sec^(2)x-2010)/(sin^(2010)x)dx=(P...

If `int(sec^(2)x-2010)/(sin^(2010)x)dx=(P(x))/(sin^(2010) x)+C`, then value of `P((pi)/(3))` is

A

0

B

`(1)/(sqrt(3))`

C

`sqrt3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\sec^2 x - 2010}{\sin^{2010} x} \, dx = \frac{P(x)}{\sin^{2010} x} + C, \] we need to find the function \( P(x) \) and then evaluate \( P\left(\frac{\pi}{3}\right) \). ### Step 1: Separate the integral We can separate the integral into two parts: \[ \int \frac{\sec^2 x}{\sin^{2010} x} \, dx - 2010 \int \frac{1}{\sin^{2010} x} \, dx. \] Let’s denote these two integrals as \( I_1 \) and \( I_2 \): \[ I_1 = \int \frac{\sec^2 x}{\sin^{2010} x} \, dx, \] \[ I_2 = \int \frac{1}{\sin^{2010} x} \, dx. \] ### Step 2: Solve \( I_1 \) For \( I_1 \), we can use integration by parts. Let: - \( u = \sin^{-2010} x \) (which implies \( du = -2010 \sin^{-2011} x \cos x \, dx \)) - \( dv = \sec^2 x \, dx \) (which implies \( v = \tan x \)) Using integration by parts: \[ I_1 = u v - \int v \, du, \] we get: \[ I_1 = \sin^{-2010} x \tan x - \int \tan x \left(-2010 \sin^{-2011} x \cos x\right) \, dx. \] This simplifies to: \[ I_1 = \frac{\tan x}{\sin^{2010} x} + 2010 \int \frac{\tan x \cos x}{\sin^{2011} x} \, dx. \] ### Step 3: Solve \( I_2 \) The integral \( I_2 \) can be written as: \[ I_2 = \int \csc^{2010} x \, dx. \] This integral can be complex, but we can keep it in this form for now. ### Step 4: Combine results Now we combine the results of \( I_1 \) and \( I_2 \): \[ \int \frac{\sec^2 x - 2010}{\sin^{2010} x} \, dx = \left(\frac{\tan x}{\sin^{2010} x} + 2010 \int \frac{\tan x \cos x}{\sin^{2011} x} \, dx\right) - 2010 \int \csc^{2010} x \, dx. \] ### Step 5: Identify \( P(x) \) From the original equation, we can see that: \[ P(x) = \tan x. \] ### Step 6: Evaluate \( P\left(\frac{\pi}{3}\right) \) Now we need to evaluate \( P\left(\frac{\pi}{3}\right) \): \[ P\left(\frac{\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right) = \sqrt{3}. \] ### Final Answer Thus, the value of \( P\left(\frac{\pi}{3}\right) \) is \[ \sqrt{3}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If int (cosec ^(2)x-2010)/(cos ^(2010)x)dx = =(f (x))/((g (x ))^(2010))+C, where f ((pi)/(4))=1, then the number of solution of the equation (f(x))/(g (x))={x} in [0,2pi] is/are: (where {.} represents fractional part function)

If y=int_(0)^(x)sqrt(sin x)dx the value of (dy)/(dx) at x=(pi)/(2) is :

int sin^(5//2)x cos^(3)x dx = 2 sin^(A//2)x[(1)/(B)-(1)/(C) sin^(2)x]+D , then the value of (A+B)-C is equal to ........ .

If f'(x)=(x-a)^(2010)(x-b)^(2009) and agtb , then

If int(cos^(3)x+cos^(5)x)/(sin^(2)x+sin^(4)x)dx=p sinx-q/(sinx)-rtan^(-1)(sinx)+C then p+2q+r is equql to:

int_(0)^(pi) x sin x cos^(2)x\ dx

The value of int(1)/(sin(x-(pi)/(3))cosx)dx , is

If= int_(0)^(pi//2) sin x . log (sin x ) dx = log ((K)/(e)). Then, the value of K is ….

int_(0)^(pi//2)(sin^(3//2)x)/(sin^(3//2)x+cos^(3//2)x)dx

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to